Authors

J.J. Barradas-Berglind, M. Muñoz-Arias, Y. Wei, W.A. Prins, A.I. Vakis, B. Jayawardhana

Abstract

This paper presents a modular modeling framework for the Ocean Grazer’s Power Take-Off (PTO) system, which operates as an array of point-absorber type devices connected to a hydraulic system. The modeling is based on the port-Hamiltonian (PH) framework that enables energy-based analysis and control of the PTO system. Firstly, a modular model of a point-absorber hydraulic system, which represents the main building block of the PTO, is presented. The model consists of wave-mechanical and hydraulic subsystems that are interconnected with a transformer-type interconnection. Secondly, we show passivity of the point-absorber hydraulic element and the accumulation of potential energy, which is due to the novel pumping mechanism of the point-absorber. Finally, we illustrate these properties through simulation results.

Keywords

Wave energy; Ocean energy; Power take-off system; Point-absorbers; Passivity

Citation

  • Journal: IFAC-PapersOnLine
  • Year: 2017
  • Volume: 50
  • Issue: 1
  • Pages: 15663–15669
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.ifacol.2017.08.2397
  • Note: 20th IFAC World Congress

BibTeX

@article{Barradas_Berglind_2017,
  title={{Towards Ocean Grazer’s Modular Power Take-Off System Modeling:a Port-Hamiltonian Approach}},
  volume={50},
  ISSN={2405-8963},
  DOI={10.1016/j.ifacol.2017.08.2397},
  number={1},
  journal={IFAC-PapersOnLine},
  publisher={Elsevier BV},
  author={Barradas-Berglind, J.J. and Muñoz-Arias, M. and Wei, Y. and Prins, W.A. and Vakis, A.I. and Jayawardhana, B.},
  year={2017},
  pages={15663--15669}
}

Download the bib file

References

  • Barradas-Berglind, Energy capture optimization for an adaptive wave energy converter. In Proc. of the RENEW2016 Conference (2016)
  • Dijkstra, Revenue optimization for the Ocean Grazer wave energy converter through storage utilization. In Proc. of the RENEW2016 Conference (2016)
  • Duindam, (2009)
  • Falnes, (2002)
  • Fujimoto, Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Au-tomatica (2003)
  • Grabmair, G., Schlacher, K. & Kugi, A. Geometric energy based analysis and controller design of hydraulic actuators applied in rolling mills. 2003 European Control Conference (ECC) 2493–2498 (2003) doi:10.23919/ecc.2003.7085340 – 10.23919/ecc.2003.7085340
  • Henderson, R. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renewable Energy vol. 31 271–283 (2006) – 10.1016/j.renene.2005.08.021
  • Jeltsema, D., Ortega, R. & Scherpen, J. M. A. On passivity and power-balance inequalities of nonlinear rlc circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 50 1174–1179 (2003) – 10.1109/tcsi.2003.816332
  • Maschke, Port-controlled Hamiltonian systems: modeling origins and system-theoretic properties. In Proceedings of the IFAC Sym-posium on Nonlinear Control Systems (1992)
  • Munoz-Arias, (2014)
  • Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
  • Energy-Maximizing Control of Wave-Energy Converters: The Development of Control System Technology to Optimize Their Operation. IEEE Control Systems vol. 34 30–55 (2014) – 10.1109/mcs.2014.2333253
  • Stegink, T., De Persis, C. & van der Schaft, A. A port-Hamiltonian approach to optimal frequency regulation in power grids. 2015 54th IEEE Conference on Decision and Control (CDC) 3224–3229 (2015) doi:10.1109/cdc.2015.7402703 – 10.1109/cdc.2015.7402703
  • Taylor, (1999)
  • Vakis, A. I. & Anagnostopoulos, J. S. Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter. Renewable Energy vol. 96 531–547 (2016) – 10.1016/j.renene.2016.04.076
  • Valentin, C., Magos, M. & Maschke, B. A port-Hamiltonian formulation of physical switching systems with varying constraints. Automatica vol. 43 1125–1133 (2007)10.1016/j.automatica.2006.12.022
  • van der Schaft, (2000)
  • van der Schaft, (2014)
  • van Rooij, (2015)
  • Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493