Switched Passivity—Based Control of the Chaplygin Sleigh
Authors
Joel Ferguson, Alejandro Donaire, Richard H. Middleton
Abstract
In this paper, a switched controller for the Chaplygin Sleigh system based on passivity and energy shaping is presented. The Chaplygin sleigh cannot be asymptotically stabilised with a smooth control law, since Brockett’s necessary conditions for smooth stabilisation is not satisfied. To asymptotically stabilise the origin, two potential energy shaping control laws are developed that render the system asymptotically stable to two equilibrium manifolds, which intersect at the origin. A switching strategy between the energy shaping controllers is derived that ensures the system converges to the intersection of the equilibrium manifolds.
Keywords
Constraints; Nonholonomic; Passivity Based Control; Path planning; Port-Hamiltonian
Citation
- Journal: IFAC-PapersOnLine
- Year: 2016
- Volume: 49
- Issue: 18
- Pages: 1012–1017
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2016.10.300
- Note: 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016- Monterey, California, USA, 23—25 August 2016
BibTeX
@article{Ferguson_2016,
title={{Switched Passivity—Based Control of the Chaplygin Sleigh}},
volume={49},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2016.10.300},
number={18},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Ferguson, Joel and Donaire, Alejandro and Middleton, Richard H.},
year={2016},
pages={1012--1017}
}
References
- Astolfi, A., Ortega, R. & Venkatraman, A. A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica vol. 46 182–189 (2010) – 10.1016/j.automatica.2009.10.027
- Bloch, (2003)
- Bloch, A. M., Reyhanoglu, M. & McClamroch, N. H. Control and stabilization of nonholonomic dynamic systems. IEEE Transactions on Automatic Control vol. 37 1746–1757 (1992) – 10.1109/9.173144
- Choset, (2005)
- Donaire, A., Romero, J. G., Perez, T. & Ortega, R. Smooth stabilisation of nonholonomic robots subject to disturbances. 2015 IEEE International Conference on Robotics and Automation (ICRA) 4385–4390 (2015) doi:10.1109/icra.2015.7139805 – 10.1109/icra.2015.7139805
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Goldstein, (1965)
- Developments in nonholonomic control problems. IEEE Control Systems vol. 15 20–36 (1995) – 10.1109/37.476384
- Lee, Passivity-based switching control for stabilization of wheeled mobile robots. Robotics: Science and Systems III (2007)
- Maschke, A Hamiltonian approach to stabilization of nonholonomic mechanical systems (1994)
- van der Schaft, (2014)