State feedback regulation on port-Hamiltonian systems: a convex based approach
Authors
Felipe M. Nicholls, Karina A. Barbosa
Abstract
This paper focuses on the state feedback control design for a class of non-linear port-Hamiltonian systems. Attention is given for non-linear systems which can be modeled as a port-Hamiltonian systems with affine state-dependent interconnection and damping matrices, and quadratic state-dependent Hamiltonian function. In particular, an LMI based characterization of the energy balance equation is achieved. Moreover, an hyper-rectangle is established on the state space domain, attempting to maximize the domain of attraction iteratively. The proposed method is applied to the third order Lotka Volterra food chain system, with good results on the convergence to steady state at the origin.
Citation
- Journal: 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA)
- Year: 2018
- Volume:
- Issue:
- Pages: 1–6
- Publisher: IEEE
- DOI: 10.1109/ica-acca.2018.8609834
BibTeX
@inproceedings{Nicholls_2018,
title={{State feedback regulation on port-Hamiltonian systems: a convex based approach}},
DOI={10.1109/ica-acca.2018.8609834},
booktitle={{2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA)}},
publisher={IEEE},
author={Nicholls, Felipe M. and Barbosa, Karina A.},
year={2018},
pages={1--6}
}
References
- boyd, Linear Matrix Inequalities In System and Control Theory (1997)
- Giusto, A., Ortega, R. & Stankovic, A. On Transient Stabilization of Power Systems: A Power-Shaping Solution for Structure-Preserving Models. Proceedings of the 45th IEEE Conference on Decision and Control 4027–4031 (2006) doi:10.1109/cdc.2006.376967 – 10.1109/cdc.2006.376967
- Prajna, S., van der Schaft, A. & Meinsma, G. An LMI approach to stabilization of linear port-controlled Hamiltonian systems. Systems & Control Letters 45, 371–385 (2002) – 10.1016/s0167-6911(01)00195-5
- Liu, Z., Ortega, R. & Su, H. Control via Interconnection and Damping Assignment of Linear Time–Invariant Systems is Equivalent to Stabilizability. IFAC Proceedings Volumes 44, 7358–7362 (2011) – 10.3182/20110828-6-it-1002.00370
- Coutinho, D. & de Souza, C. E. Nonlinear State Feedback Design With a Guaranteed Stability Domain for Locally Stabilizable Unstable Quadratic Systems. IEEE Trans. Circuits Syst. I 59, 360–370 (2012) – 10.1109/tcsi.2011.2162371
- BYRNE, R. M. & WALL, E. T. A synthesis of Lyapunov’s first and second methods. International Journal of Systems Science 5, 1179–1191 (1974) – 10.1080/00207727408920171
- khalil, Nonlinear Systems (2001)
- de Oliveira, M. C. & Skelton, R. E. Stability tests for constrained linear systems. Lecture Notes in Control and Information Sciences 241–257 (2001) doi:10.1007/bfb0110624 – 10.1007/bfb0110624
- Tarbouriech, S., Queinnec, I., Calliero, T. R. & Peres, P. L. D. Control design for bilinear systems with a guaranteed region of stability: An LMI-based approach. 2009 17th Mediterranean Conference on Control and Automation 809–814 (2009) doi:10.1109/med.2009.5164643 – 10.1109/med.2009.5164643
- Ortega, R., Astolfi, A., Bastin, G. & Rodriguez, H. Stabilization of food-chain systems using a port-controlled Hamiltonian description. Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334) (2000) doi:10.1109/acc.2000.878579 – 10.1109/acc.2000.878579
- Vincent, B., Vu, T., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian modeling and reduction of a burning plasma system. IFAC-PapersOnLine 51, 68–73 (2018) – 10.1016/j.ifacol.2018.06.017
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica 64, 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Alazard, D., Aoues, S., Cardoso-Ribeiro, F. L. & Matignon, D. Disturbance rejection for a rotating flexible spacecraft: a port-Hamiltonian approach. IFAC-PapersOnLine 51, 113–118 (2018) – 10.1016/j.ifacol.2018.06.031
- guang-ren, LMIs in Control System (2013)
- Nunna, K., Sassano, M. & Astolfi, A. Constructive Interconnection and Damping Assignment for Port-Controlled Hamiltonian Systems. IEEE Trans. Automat. Contr. 60, 2350–2361 (2015) – 10.1109/tac.2015.2400663
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Chilali, M. & Gahinet, P. H/sub ∞/ design with pole placement constraints: an LMI approach. IEEE Trans. Automat. Contr. 41, 358–367 (1996) – 10.1109/9.486637
- Lofberg, J. YALMIP : a toolbox for modeling and optimization in MATLAB. 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508) 284–289 doi:10.1109/cacsd.2004.1393890 – 10.1109/cacsd.2004.1393890
- Acosta, J. A. & Astolfi, A. On the PDEs arising in IDA-PBC. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 2132–2137 (2009) doi:10.1109/cdc.2009.5400580 – 10.1109/cdc.2009.5400580
- Borja, P., Cisneros, R. & Ortega, R. Shaping the energy of port-Hamiltonian systems without solving PDE’s. 2015 54th IEEE Conference on Decision and Control (CDC) 5713–5718 (2015) doi:10.1109/cdc.2015.7403116 – 10.1109/cdc.2015.7403116