Disturbance rejection for a rotating flexible spacecraft: a port-Hamiltonian approach
Authors
Daniel Alazard, Saïd Aoues, Flávio Luiz Cardoso-Ribeiro, Denis Matignon
Abstract
In this paper, the mathematical model of a flexible spacecraft system composed of a hub and two symmetrical beams loaded with tip masses is reconsidered to design a control law for internal disturbance rejection. This model has a port-Hamiltonian structure and is passive. The disturbance rejection is performed by a feedback control law using the angular rates at the two tips of a beam. The closed-loop asymptotic stability of such a collocated / non-collocated control is analyzed through explicitly solving the Partial Differential Equations (PDE) of the system. Finally, the experimental results are carried out to assess the validity of the proposed control methodology.
Keywords
Port-Hamiltonian systems; passivity-based control; flexible spacecraft; Lyapunov stability
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 113–118
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.031
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Alazard_2018,
title={{Disturbance rejection for a rotating flexible spacecraft: a port-Hamiltonian approach}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.031},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Alazard, Daniel and Aoues, Saïd and Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis},
year={2018},
pages={113--118}
}
References
- Alazard, D. & Bouttes, R. BAMOSS: An experimental tested for flexible structure dynamics modeling and control. 2009 European Control Conference (ECC) 1167–1172 (2009) doi:10.23919/ecc.2009.7074563 – 10.23919/ecc.2009.7074563
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Transactions on Control Systems Technology vol. 27 355–362 (2019) – 10.1109/tcst.2017.2771244
- Ben-Asher, J., Burns, J. A. & Cliff, E. M. Time-optimal slewing of flexible spacecraft. Journal of Guidance, Control, and Dynamics vol. 15 360–367 (1992) – 10.2514/3.20844
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Elgohary, T. A., Turner, J. D. & Junkins, J. L. Analytic Transfer Functions for the Dynamics & Control of Flexible Rotating Spacecraft Performing Large Angle Maneuvers. The Journal of the Astronautical Sciences vol. 62 168–195 (2015) – 10.1007/s40295-015-0038-0
- Garcia–Canseco, E., Pasumarthy, R., van der Schaft, A. & Ortega, R. ON CONTROL BY INTERCONNECTION OF PORT HAMILTONIAN SYSTEMS. IFAC Proceedings Volumes vol. 38 330–335 (2005) – 10.3182/20050703-6-cz-1902.00709
- Jacob, (2012)
- Junkins, J. L. & Bang, H. Maneuver and vibration control of hybrid coordinate systems using Lyapunov stability theory. Journal of Guidance, Control, and Dynamics vol. 16 668–676 (1993) – 10.2514/3.21066
- Karray, F., Grewal, A., Glaum, M. & Modi, V. Stiffening control of a class of nonlinear affine systems. IEEE Transactions on Aerospace and Electronic Systems vol. 33 473–484 (1997) – 10.1109/7.575886
- Kelemen, M. & Bagchi, A. Modeling and feedback control of a flexible arm of a robot for prescribed frequency-domain tolerances. Automatica vol. 29 899–909 (1993) – 10.1016/0005-1098(93)90095-b
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Maschke, B. M. J. & van der Schaft, A. J. Canonical Interdomain Coupling in Distributed Parameter Systems: An Extension of the Symplectic Gyrator. Dynamic Systems and Control 371–376 (2001) doi:10.1115/imece2001/dsc-24546 – 10.1115/imece2001/dsc-24546
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- Sidi, (1997)
- Singh, S. N. Rotational maneuver of nonlinear uncertain elastic spacecraft. IEEE Transactions on Aerospace and Electronic Systems vol. 24 114–123 (1988) – 10.1109/7.1044
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Zhu, W. D. & Mote, C. D., Jr. Dynamic Modeling and Optimal Control of Rotating Euler-Bernoulli Beams. Journal of Dynamic Systems, Measurement, and Control vol. 119 802–808 (1997) – 10.1115/1.2802393