Stage‐cost design for optimal and model predictive control of linear port‐Hamiltonian systems: Energy efficiency and robustness
Authors
Gökçen Devlet Şen, Manuel Schaller, Karl Worthmann
Abstract
We consider singular optimal control of port‐Hamiltonian systems with minimal energy supply. We investigate the robustness of different stage‐cost designs w.r.t. time discretization and show that alternative formulations that are equivalent in continuous time, differ strongly in view of discretization. Furthermore, we consider the impact of additional quadratic control regularization and demonstrate that this leads to a considerable increase in energy consumption. Then, we extend our results to the tracking problem within model predictive control and show that the intrinsic but singular choice of the cost functional as the supplied energy leads to a substantial improvement of the closed‐loop performance.
Citation
- Journal: PAMM
- Year: 2023
- Volume: 23
- Issue: 4
- Pages:
- Publisher: Wiley
- DOI: 10.1002/pamm.202300296
BibTeX
@article{_en_2023,
title={{Stage‐cost design for optimal and model predictive control of linear port‐Hamiltonian systems: Energy efficiency and robustness}},
volume={23},
ISSN={1617-7061},
DOI={10.1002/pamm.202300296},
number={4},
journal={PAMM},
publisher={Wiley},
author={Şen, Gökçen Devlet and Schaller, Manuel and Worthmann, Karl},
year={2023}
}
References
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information 37, 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32, 395–515 (2023) – 10.1017/s0962492922000083
- Grune, L. Dissipativity and Optimal Control: Examining the Turnpike Phenomenon. IEEE Control Syst. 42, 74–87 (2022) – 10.1109/mcs.2021.3139724
- Faulwasser, T. & Grüne, L. Turnpike properties in optimal control. Handbook of Numerical Analysis 367–400 (2022) doi:10.1016/bs.hna.2021.12.011 – 10.1016/bs.hna.2021.12.011
- Grüne, L. Economic receding horizon control without terminal constraints. Automatica 49, 725–734 (2013) – 10.1016/j.automatica.2012.12.003
- Faulwasser, T., Maschke, B., Philipp, F., Schaller, M. & Worthmann, K. Optimal Control of Port-Hamiltonian Descriptor Systems with Minimal Energy Supply. SIAM J. Control Optim. 60, 2132–2158 (2022) – 10.1137/21m1427723
- Schaller, M., Philipp, F., Faulwasser, T., Worthmann, K. & Maschke, B. Control of port-Hamiltonian systems with minimal energy supply. European Journal of Control 62, 33–40 (2021) – 10.1016/j.ejcon.2021.06.017
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters 133, 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B. & Diehl, M. CasADi: a software framework for nonlinear optimization and optimal control. Math. Prog. Comp. 11, 1–36 (2018) – 10.1007/s12532-018-0139-4
- Gören-Sümer, L. & Yalçιn, Y. Gradient Based Discrete-Time Modeling and Control of Hamiltonian Systems. IFAC Proceedings Volumes 41, 212–217 (2008) – 10.3182/20080706-5-kr-1001.00036