Stabilization of port-controlled Hamiltonian systems via energy balancing
Authors
Romeo Ortega, Arjan J. van der Schaft, Bernhard M. Maschke
Abstract
Passivity-based control (PBC) for regulation of mechanical systems is a well established tehcnique that yields robust controllers that have a clear physical interpretation in terms of interconnection of the system with its environment. In particular, the total energy of the closed-loop is the difference between the energy of the system and the energy supplied by the controller. Furthermore, since the Euler-Lagrange (EL) structure is preserved in closed-loop, PBC is robustly stable vis á vis unmodeled dissipative effects and inherits some robust performance measures from its inverse optimality. Unfortunately, these nice properties are lost when PBC is used in other applications, for instance, in electrical and electromechanical systems. Our main objective in this paper is to develop a new PBC theory for port-controlled Hamiltonian (PCH) systems, which result from the network modeling of energy-conserving lumped-parameter physical systems with independent storage elements, and strictly contain the class of EL models. We identify a class of PCH models for which PBC ensures the Hamiltonian structure is preserved, with storage function the energy balance. One final advantage of the method is that it is rather systematic and the controller can be easily derived using symbolic computation
Keywords
Lyapunov Function; Output Feedback; Balance Function; Storage Function; Interconnection Structure
Citation
- ISBN: 9781852336387
- Publisher: Springer London
- DOI: 10.1007/1-84628-577-1_13
BibTeX
@inbook{Ortega_1999,
title={{Stabilization of port-controlled Hamiltonian systems via energy balancing}},
ISBN={9781846285776},
ISSN={0170-8643},
DOI={10.1007/1-84628-577-1_13},
booktitle={{Stability and Stabilization of Nonlinear Systems}},
publisher={Springer London},
author={Ortega, Romeo and van der Schaft, Arjan J. and Maschke, Bernhard M.},
year={1999},
pages={239--260}
}
References
- Ailon, A. & Ortega, R. An observer-based set-point controller for robot manipulators with flexible joints. Systems & Control Letters 21, 329–335 (1993) – 10.1016/0167-6911(93)90076-i
- Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E. & de Alvarez, G. S. Stabilization of rigid body dynamics by internal and external torques. Automatica 28, 745–756 (1992) – 10.1016/0005-1098(92)90034-d
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- H. Khalil, Nonlinear systems (1996)
- Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
- Loria, A., Kelly, R., Ortega, R. & Santibanez, V. On global output feedback regulation of Euler-Lagrange systems with bounded inputs. IEEE Trans. Automat. Contr. 42, 1138–1143 (1997) – 10.1109/9.618243
- Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1994). doi:10.1007/978-1-4612-2682-6 – 10.1007/978-1-4612-2682-6
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Maschke, B. M. J. Interconnection and Structure in Physical Systems’ Dynamics. IFAC Proceedings Volumes 31, 285–290 (1998) – 10.1016/s1474-6670(17)40349-1
- Ortega, R. & Spong, M. W. Adaptive motion control of rigid robots: A tutorial. Automatica 25, 877–888 (1989) – 10.1016/0005-1098(89)90054-x
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Ortega, R., Loria, A., Kelly, R. & Praly, L. On passivity‐based output feedback global stabilization of euler‐lagrange systems. Intl J Robust & Nonlinear 5, 313–323 (1995) – 10.1002/rnc.4590050407
- Ortega, R., van der Schaft, A. J. & Maschke, B. M. Stabilization of port-controlled Hamiltonian systems via energy balancing. Lecture Notes in Control and Information Sciences 239–260 (1999) doi:10.1007/1-84628-577-1_13 – 10.1007/1-84628-577-1_13
- Rodriguez, H., Ortega, R., Escobar, G. & Barabanov, N. A robustly stable output feedback saturated controller for the boost DC-to-DC converter. Systems & Control Letters 40, 1–8 (2000) – 10.1016/s0167-6911(99)00113-9
- Stramigioli, S., Maschke, B. & van der Schaft, A. Passive Output Feedback and Port Interconnection. IFAC Proceedings Volumes 31, 591–596 (1998) – 10.1016/s1474-6670(17)40401-0
- Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control 103, 119–125 (1981) – 10.1115/1.3139651
- A. J. Schaft van der, L2-Gain and Passivity Techniques in Nonlinear Control (1996)
- van der Schaft, A. J. System theory and mechanics. Lecture Notes in Control and Information Sciences 426–452 (1989) doi:10.1007/bfb0008472 – 10.1007/bfb0008472
- A. Schaft van der, Archiv für Elektronik und Übertragungstechnik (1995)