Stability and asymptotic analysis for instationary gas transport via relative energy estimates
Authors
Abstract
We consider the transport of gas in long pipes and pipeline networks for which the dynamics are dominated by friction at the pipe walls. The governing equations can be formulated as an abstract dissipative Hamiltonian system which allows us to derive perturbation bounds via relative energy estimates using a problem adapted nonlinear analysis. As particular consequences of these results, we are able to prove stability estimates with respect to initial conditions and model parameters and we conduct a quantitative asymptotic analysis in the high friction limit. Our results are established first for the flow in a single pipe and we then extend our analysis to pipe networks in the spirit of energy-based port-Hamiltonian modelling.
Keywords
35B25; 35B35; 35B40; 35L65
Citation
- Journal: Numerische Mathematik
- Year: 2023
- Volume: 153
- Issue: 4
- Pages: 701–728
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00211-023-01349-9
BibTeX
@article{Egger_2023,
title={{Stability and asymptotic analysis for instationary gas transport via relative energy estimates}},
volume={153},
ISSN={0945-3245},
DOI={10.1007/s00211-023-01349-9},
number={4},
journal={Numerische Mathematik},
publisher={Springer Science and Business Media LLC},
author={Egger, H. and Giesselmann, J.},
year={2023},
pages={701--728}
}
References
- Bamberger, A., Sorine, M. & Yvon, J. P. Analyse et controle d’un reseau de transport de gaz. Lecture Notes in Physics 345–359 (1979) doi:10.1007/3-540-09119-x_110 – 10.1007/3-540-09119-x_110
- Brouwer, J., Gasser, I. & Herty, M. Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks. Multiscale Modeling & Simulation vol. 9 601–623 (2011) – 10.1137/100813580
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Antonio Carrillo, J. et al. Relative entropy method for the relaxation limit of hydrodynamic models. Networks & Heterogeneous Media vol. 15 369–387 (2020) – 10.3934/nhm.2020023
- Dafermos, C. M. The second law of thermodynamics and stability. Archive for Rational Mechanics and Analysis vol. 70 167–179 (1979) – 10.1007/bf00250353
- Dafermos, C. M. Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften (Springer Berlin Heidelberg, 2016). doi:10.1007/978-3-662-49451-6 – 10.1007/978-3-662-49451-6
- DiPerna, R. Indiana University Mathematics Journal vol. 28 137 (1979) – 10.1512/iumj.1979.28.28011
- Duan, R., Liu, Q. & Zhu, C. Darcy’s law and diffusion for a two-fluid Euler–Maxwell system with dissipation. Mathematical Models and Methods in Applied Sciences vol. 25 2089–2151 (2015) – 10.1142/s0218202515500530
- Egger, H. A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks. SIAM Journal on Scientific Computing vol. 40 A108–A129 (2018) – 10.1137/16m1094373
- Feireisl, E. & Novotný, A. Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics (Springer International Publishing, 2017). doi:10.1007/978-3-319-63781-5 – 10.1007/978-3-319-63781-5
- Geng, S. & Huang, F. L1-convergence rates to the Barenblatt solution for the damped compressible Euler equations. Journal of Differential Equations vol. 266 7890–7908 (2019) – 10.1016/j.jde.2018.12.016
- Giesselmann, J., Lattanzio, C. & Tzavaras, A. E. Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics. Archive for Rational Mechanics and Analysis vol. 223 1427–1484 (2016) – 10.1007/s00205-016-1063-2
- Hauschild, S.-A. et al. Port-Hamiltonian Modeling of District Heating Networks. Differential-Algebraic Equations Forum 333–355 (2020) doi:10.1007/978-3-030-53905-4_11 – 10.1007/978-3-030-53905-4_11
- Huang, F., Marcati, P. & Pan, R. Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping and Vacuum. Archive for Rational Mechanics and Analysis vol. 176 1–24 (2005) – 10.1007/s00205-004-0349-y
- Huang, F., Pan, R. & Wang, Z. L 1 Convergence to the Barenblatt Solution for Compressible Euler Equations with Damping. Archive for Rational Mechanics and Analysis vol. 200 665–689 (2010) – 10.1007/s00205-010-0355-1
- Junca, S. & Rascle, M. Zeitschrift für angewandte Mathematik und Physik vol. 53 239–264 (2002) – 10.1007/s00033-002-8154-7
- Jüngel, A. Entropy Methods for Diffusive Partial Differential Equations. SpringerBriefs in Mathematics (Springer International Publishing, 2016). doi:10.1007/978-3-319-34219-1 – 10.1007/978-3-319-34219-1
- Lattanzio, C. & Tzavaras, A. E. Relative Entropy in Diffusive Relaxation. SIAM Journal on Mathematical Analysis vol. 45 1563–1584 (2013) – 10.1137/120891307
- Lattanzio, C. & Tzavaras, A. E. From gas dynamics with large friction to gradient flows describing diffusion theories. Communications in Partial Differential Equations vol. 42 261–290 (2016) – 10.1080/03605302.2016.1269808
- Liljegren-Sailer, B.: On port-Hamiltonian modeling and structure-preserving model reduction. Doctoralthesis, Universität Trier (2020)
- Lin, C. & Coulombel, J.-F. The strong relaxation limit of the multidimensional Euler equations. Nonlinear Differential Equations and Applications NoDEA vol. 20 447–461 (2012) – 10.1007/s00030-012-0159-0
- Marcati, P. & Milani, A. The one-dimensional Darcy’s law as the limit of a compressible Euler flow. Journal of Differential Equations vol. 84 129–147 (1990) – 10.1016/0022-0396(90)90130-h
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- AJ Osiadacz. Osiadacz, A.J.: Simulation and Analysis of Gas Networks. Gulf Publishing Company, Houston (1987) (1987)
- Raviart, P. A. Sur la résolution de certaines equations paraboliques non linéaires. Journal of Functional Analysis vol. 5 299–328 (1970) – 10.1016/0022-1236(70)90031-5
- A. Reigstad, G. Numerical network models and entropy principles for isothermal junction flow. Networks & Heterogeneous Media vol. 9 65–95 (2014) – 10.3934/nhm.2014.9.65
- L Schöbel-Kröhn. Schöbel-Kröhn, L.: Analysis and numerical approximation of nonlinear evolution equations on network structures. Dr. Hut-Verlag, München (2020) (2020)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987) Translated from the German by C. B. Thomas and M. J. Thomas
- Xu, J. & Kawashima, S. Diffusive relaxation limit of classical solutions to the damped compressible Euler equations. Journal of Differential Equations vol. 256 771–796 (2014) – 10.1016/j.jde.2013.09.019