Authors

Jan Giesselmann, Corrado Lattanzio, Athanasios E. Tzavaras

Abstract

We consider a Euler system with dynamics generated by a potential energy functional. We propose a form for the relative energy that exploits the variational structure and we derive a relative energy identity. When applied to specific energies, this yields relative energy identities for the Euler–Korteweg, the Euler–Poisson, the Quantum Hydrodynamics system, and low order approximations of the Euler–Korteweg system. For the Euler–Korteweg system we prove a stability theorem between a weak and a strong solution and an associated weak-strong uniqueness theorem. In the second part we focus on the Navier–Stokes–Korteweg system (NSK) with non-monotone pressure laws, and prove stability for the NSK system via a modified relative energy approach. We prove the continuous dependence of solutions on initial data and the convergence of solutions of a low order model to solutions of the NSK system. The last two results provide physically meaningful examples of how higher order regularization terms enable the use of the relative energy framework for models with energies which are not poly- or quasi-convex, compensated by higher-order gradients.

Citation

  • Journal: Archive for Rational Mechanics and Analysis
  • Year: 2017
  • Volume: 223
  • Issue: 3
  • Pages: 1427–1484
  • Publisher: Springer Science and Business Media LLC
  • DOI: 10.1007/s00205-016-1063-2

BibTeX

@article{Giesselmann_2016,
  title={{Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics}},
  volume={223},
  ISSN={1432-0673},
  DOI={10.1007/s00205-016-1063-2},
  number={3},
  journal={Archive for Rational Mechanics and Analysis},
  publisher={Springer Science and Business Media LLC},
  author={Giesselmann, Jan and Lattanzio, Corrado and Tzavaras, Athanasios E.},
  year={2016},
  pages={1427--1484}
}

Download the bib file

References

  • Antonelli, P. & Marcati, P. On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics. Communications in Mathematical Physics vol. 287 657–686 (2008) – 10.1007/s00220-008-0632-0
  • Antonelli, P. & Marcati, P. The Quantum Hydrodynamics System in Two Space Dimensions. Archive for Rational Mechanics and Analysis vol. 203 499–527 (2011) – 10.1007/s00205-011-0454-7
  • Benzoni-Gavage, S., Danchin, R., Descombes, S. & Jamet, D. Structure of Korteweg models and stability of diffuse interfaces. Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications vol. 7 371–414 (2005) – 10.4171/ifb/130
  • Benzoni-Gavage, S., Danchin, R. & Descombes, S. On the well-posedness for the Euler-Korteweg model in several space dimensions. Indiana University Mathematics Journal vol. 56 1499–1579 (2007) – 10.1512/iumj.2007.56.2974
  • Brandon, D., Lin, T. & Rogers, R. C. Phase transitions and hysteresis in nonlocal and order-parameter models. Meccanica vol. 30 541–565 (1995) – 10.1007/bf01557084
  • Braack, M. & Prohl, A. Stable discretization of a diffuse interface model for liquid-vapor flows with surface tension. ESAIM: Mathematical Modelling and Numerical Analysis vol. 47 401–420 (2013) – 10.1051/m2an/2012032
  • Ballew, J. & Trivisa, K. Weakly dissipative solutions and weak–strong uniqueness for the Navier–Stokes–Smoluchowski system. Nonlinear Analysis: Theory, Methods & Applications vol. 91 1–19 (2013) – 10.1016/j.na.2013.06.002
  • Brenier, Y. Topology-Preserving Diffusion of Divergence-Free Vector Fields and Magnetic Relaxation. Communications in Mathematical Physics vol. 330 757–770 (2014) – 10.1007/s00220-014-1967-3
  • Charve, F. Local in time results for local and non-local capillary Navier–Stokes systems with large data. Journal of Differential Equations vol. 256 2152–2193 (2014) – 10.1016/j.jde.2013.12.017
  • Dafermos, C. M. The second law of thermodynamics and stability. Archive for Rational Mechanics and Analysis vol. 70 167–179 (1979) – 10.1007/bf00250353
  • Dafermos, C. M. STABILITY OF MOTIONS OF THERMOELASTIC FLUIDS. Journal of Thermal Stresses vol. 2 127–134 (1979) – 10.1080/01495737908962394
  • Dafermos, C. M. Quasilinear hyperbolic systems with involutions. Archive for Rational Mechanics and Analysis vol. 94 373–389 (1986) – 10.1007/bf00280911
  • Dafermos, C. M. Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften (Springer Berlin Heidelberg, 2010). doi:10.1007/978-3-642-04048-1 – 10.1007/978-3-642-04048-1
  • DiPerna, R. Indiana University Mathematics Journal vol. 28 137 (1979) – 10.1512/iumj.1979.28.28011
  • Donatelli, D., Feireisl, E. & Marcati, P. Well/Ill Posedness for the Euler-Korteweg-Poisson System and Related Problems. Communications in Partial Differential Equations vol. 40 1314–1335 (2014) – 10.1080/03605302.2014.972517
  • Dubrovin, B. A., Novikov, S. P. & Fomenko, A. T. Modern Geometry— Methods and Applications. Graduate Texts in Mathematics (Springer New York, 1985). doi:10.1007/978-1-4612-1100-6 – 10.1007/978-1-4612-1100-6
  • Dunn, J. E. & Serrin, J. On the thermomechanics of interstitial working. Archive for Rational Mechanics and Analysis vol. 88 95–133 (1985) – 10.1007/bf00250907
  • Engel, P., Viorel, A. & Rohde, C. A low-order approximation for viscous-capillary phase transition dynamics. Portugaliae Mathematica vol. 70 319–344 (2013) – 10.4171/pm/1937
  • Feireisl, E. & Novotný, A. Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System. Archive for Rational Mechanics and Analysis vol. 204 683–706 (2012) – 10.1007/s00205-011-0490-3
  • Giesselmann, J. A Relative Entropy Approach to Convergence of a Low Order Approximation to a Nonlinear Elasticity Model with Viscosity and Capillarity. SIAM Journal on Mathematical Analysis vol. 46 3518–3539 (2014) – 10.1137/140951710
  • Giesselmann, J., Makridakis, C. & Pryer, T. Energy consistent discontinuous Galerkin methods for the Navier–Stokes–Korteweg system. Mathematics of Computation vol. 83 2071–2099 (2014) – 10.1090/s0025-5718-2014-02792-0
  • Hamilton, R. S. The inverse function theorem of Nash and Moser. Bulletin of the American Mathematical Society vol. 7 65–222 (1982) – 10.1090/s0273-0979-1982-15004-2
  • Ju, Q. et al. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure & Applied Analysis vol. 9 1577–1590 (2010) – 10.3934/cpaa.2010.9.1577
  • Kotschote, M. Strong solutions for a compressible fluid model of Korteweg type. Annales de l’Institut Henri Poincaré C, Analyse non linéaire vol. 25 679–696 (2008) – 10.1016/j.anihpc.2007.03.005
  • Lattanzio, C. & Tzavaras, A. E. Structural Properties of Stress Relaxation and Convergence from Viscoelasticity to Polyconvex Elastodynamics. Archive for Rational Mechanics and Analysis vol. 180 449–492 (2005) – 10.1007/s00205-005-0404-3
  • Lattanzio, C. & Tzavaras, A. E. Relative Entropy in Diffusive Relaxation. SIAM Journal on Mathematical Analysis vol. 45 1563–1584 (2013) – 10.1137/120891307
  • Lattanzio, C. & Tzavaras, A. E. From gas dynamics with large friction to gradient flows describing diffusion theories. Communications in Partial Differential Equations vol. 42 261–290 (2016) – 10.1080/03605302.2016.1269808
  • Leger, N. & Vasseur, A. Relative Entropy and the Stability of Shocks and Contact Discontinuities for Systems of Conservation Laws with non-BV Perturbations. Archive for Rational Mechanics and Analysis vol. 201 271–302 (2011) – 10.1007/s00205-011-0431-1
  • Luo, T. & Smoller, J. Existence and Non-linear Stability of Rotating Star Solutions of the Compressible Euler–Poisson Equations. Archive for Rational Mechanics and Analysis vol. 191 447–496 (2008) – 10.1007/s00205-007-0108-y
  • Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1999). doi:10.1007/978-0-387-21792-5 – 10.1007/978-0-387-21792-5
  • Neusser, J., Rohde, C. & Schleper, V. Relaxation of the Navier–Stokes–Korteweg equations for compressible two‐phase flow with phase transition. International Journal for Numerical Methods in Fluids vol. 79 615–639 (2015) – 10.1002/fld.4065
  • Otto, F. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION. Communications in Partial Differential Equations vol. 26 101–174 (2001) – 10.1081/pde-100002243
  • Y. Peng, Asymp. Anal. (2005)
  • Ren, X. & Truskinovsky, L. Journal of Elasticity vol. 59 319–355 (2000) – 10.1023/a:1011003321453
  • Rohde, C. A local and low-order Navier-Stokes-Korteweg system. Contemporary Mathematics 315–337 (2010) doi:10.1090/conm/526/10387 – 10.1090/conm/526/10387
  • Solci, M. & Vitali, E. Variational models for phase separation. Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications vol. 5 27–46 (2003) – 10.4171/ifb/70
  • L. Tian, J. Sci. Comput. (2014)