Authors

Mehdi Farokhian Firuzi, Alireza Roosta, Mohsen Gitizadeh

Abstract

This work considers the problem of decentralized control of inverter-based ac micro-grid in different operation modes. The main objectives are to (i) design decentralized frequency and voltage controllers, to gather with power sharing, without information exchange between microsources (ii) design passive dynamic controllers which ensure stability of the entire microgrid system (iii) capture nonlinear, interconnected and large-scale dynamic of the micro-grid system with meshed topology as a port-Hamiltonian formulation (iv) expand the property of shifted-energy function in the context of decentralized control of ac micro-grid (v) analysis of system stability in large signal point of view. More precisely, to deal with nonlinear, interconnected and large-scale structure of micro-grid systems, the port-Hamiltonian formulation is used to capture the dynamic of micro-grid components including microsource, distribution line and load dynamics as well as interconnection controllers. Furthermore, to deal with large signal stability problem of the microgrid system in the grid-connected and islanded conditions, the shifted-Hamiltonian energy function is served as a storage function to ensure incremental passivity and stability of the microgrid system. Moreover, it is shown that the aggregating of the microgrid dynamic and the decentralized controller dynamics satisfies the incremental passivity. Finally, the effectiveness of the proposed controllers is evaluated through simulation studies. The different scenarios including grid-connected and islanded modes as well as transition between both modes are simulated. The simulation conforms that the decentralized control dynamics are suited to achieve the desired objective of frequency synchronization, voltage control and power sharing in the grid-connected and islanded modes. The simulation results demonstrate the effectiveness of the proposed control strategy.

Keywords

Decentralized control; Inverter-based micro-grid; Frequency and voltage control; Active and reactive power sharing; Incremental passivity; Port-Hamiltonian framework; Shifted-energy function

Citation

  • Journal: Protection and Control of Modern Power Systems
  • Year: 2019
  • Volume: 4
  • Issue: 1
  • Pages:
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1186/s41601-019-0120-x

BibTeX

@article{Farokhian_Firuzi_2019,
  title={{Stability analysis and decentralized control of inverter-based ac microgrid}},
  volume={4},
  ISSN={2367-0983},
  DOI={10.1186/s41601-019-0120-x},
  number={1},
  journal={Protection and Control of Modern Power Systems},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Farokhian Firuzi, Mehdi and Roosta, Alireza and Gitizadeh, Mohsen},
  year={2019}
}

Download the bib file

References

  • Hatziargyriou, N., Asano, H., Iravani, R. & Marnay, C. Microgrids. IEEE Power and Energy Magazine vol. 5 78–94 (2007) – 10.1109/mpae.2007.376583
  • Kroposki, B. et al. Making microgrids work. IEEE Power and Energy Magazine vol. 6 40–53 (2008) – 10.1109/mpe.2008.918718
  • Guerrero, J. M., Chandorkar, M., Lee, T.-L. & Loh, P. C. Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control. IEEE Transactions on Industrial Electronics vol. 60 1254–1262 (2013) – 10.1109/tie.2012.2194969
  • Chandorkar, M. C., Divan, D. M. & Adapa, R. Control of parallel connected inverters in standalone AC supply systems. IEEE Transactions on Industry Applications vol. 29 136–143 (1993) – 10.1109/28.195899
  • A. Tuladhar. Tuladhar, A., Jin, H., Unger, T., Mauch, K. (1997). Parallel operation of single phase inverter modules with no control interconnections. In Applied Power Electronics Conference and Exposition, 1997. APEC’97 Conference Proceedings 1997., Twelfth Annual, vol. 1. IEEE, Atlanta, (pp. 94–100). (1997)
  • Tuladhar, A., Hua Jin, Unger, T. & Mauch, K. Control of parallel inverters in distributed AC power systems with consideration of line impedance effect. IEEE Transactions on Industry Applications vol. 36 131–138 (2000) – 10.1109/28.821807
  • R. Majumder. Majumder, R., Ghosh, A., Ledwich, G., Zare, F. (2009). Angle droop versus frequency droop in a voltage source converter based autonomous microgrid. In Power & Energy Society General Meeting, 2009. PES’09. IEEE. IEEE, Calgary, (pp. 1–8). (2009)
  • Majumder, R. et al. Improvement of Stability and Load Sharing in an Autonomous Microgrid Using Supplementary Droop Control Loop. IEEE Transactions on Power Systems vol. 25 796–808 (2010) – 10.1109/tpwrs.2009.2032049
  • Majumder, R., Ghosh, A., Ledwich, G. & Zare, F. Load sharing and power quality enhanced operation of a distributed microgrid. IET Renewable Power Generation vol. 3 109–119 (2009) – 10.1049/iet-rpg:20080001
  • Li, Y. W. & Kao, C.-N. An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low-Voltage Multibus Microgrid. IEEE Transactions on Power Electronics vol. 24 2977–2988 (2009) – 10.1109/tpel.2009.2022828
  • Guerrero, J. M., GarciadeVicuna, L., Matas, J., Castilla, M. & Miret, J. A Wireless Controller to Enhance Dynamic Performance of Parallel Inverters in Distributed Generation Systems. IEEE Transactions on Power Electronics vol. 19 1205–1213 (2004) – 10.1109/tpel.2004.833451
  • Chiang, S. J., Yen, C. Y. & Chang, K. T. A multimodule parallelable series-connected PWM voltage regulator. IEEE Transactions on Industrial Electronics vol. 48 506–516 (2001) – 10.1109/41.925577
  • Burup, U., Enjeti, P. N. & Blaabjerg, F. A new space-vector-based control method for UPS systems powering nonlinear and unbalanced loads. IEEE Transactions on Industry Applications vol. 37 1864–1870 (2001) – 10.1109/28.968202
  • Lee, T.-L. & Cheng, P.-T. Design of a New Cooperative Harmonic Filtering Strategy for Distributed Generation Interface Converters in an Islanding Network. IEEE Transactions on Power Electronics vol. 22 1919–1927 (2007) – 10.1109/tpel.2007.904200
  • Tanaka, K. et al. Decentralized voltage control in distribution systems by controlling reactive power of inverters. 2009 IEEE International Symposium on Industrial Electronics 1385–1390 (2009) doi:10.1109/isie.2009.5222594 – 10.1109/isie.2009.5222594
  • Riverso, S., Sarzo, F., Ferrari-trecate, G. (2014). Plug-and-play voltage and frequency control of islanded microgrids with meshed topology, (pp. 1–6): Citeseer.
  • Riverso, S., Sarzo, F. & Ferrari-Trecate, G. Plug-and-Play Voltage and Frequency Control of Islanded Microgrids With Meshed Topology. IEEE Transactions on Smart Grid vol. 6 1176–1184 (2015) – 10.1109/tsg.2014.2381093
  • Riverso, S., Farina, M. & Ferrari-Trecate, G. Plug-and-Play decentralized Model Predictive Control. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 4193–4198 (2012) doi:10.1109/cdc.2012.6426730 – 10.1109/cdc.2012.6426730
  • Riverso, S., Farina, M. & Ferrari-Trecate, G. Plug-and-play model predictive control based on robust control invariant sets. Automatica vol. 50 2179–2186 (2014) – 10.1016/j.automatica.2014.06.004
  • Riverso, S. (2014). Distributed and plug-and-play control for constrained systems. doctoral dissertation. Universit‘a degli studi di Pavia, Dipartimento di Informatica e Sistemistica.
  • Stoustrup, J. Plug & Play Control: Control Technology Towards New Challenges. European Journal of Control vol. 15 311–330 (2009) – 10.3166/ejc.15.311-330
  • Vasquez, J. C., Guerrero, J. M., Savaghebi, M., Eloy-Garcia, J. & Teodorescu, R. Modeling, Analysis, and Design of Stationary-Reference-Frame Droop-Controlled Parallel Three-Phase Voltage Source Inverters. IEEE Transactions on Industrial Electronics vol. 60 1271–1280 (2013) – 10.1109/tie.2012.2194951
  • Quesada, J., Sebastián, R., Castro, M. & Sainz, J. A. Control of inverters in a low voltage microgrid with distributed battery energy storage. Part I: Primary control. Electric Power Systems Research vol. 114 126–135 (2014) – 10.1016/j.epsr.2013.11.023
  • Golsorkhi, M. S. & Lu, D. D. C. A Control Method for Inverter-Based Islanded Microgrids Based on V-I Droop Characteristics. IEEE Transactions on Power Delivery vol. 30 1196–1204 (2015) – 10.1109/tpwrd.2014.2357471
  • Zhu, Y. et al. A Virtual Impedance Optimization Method for Reactive Power Sharing in Networked Microgrid. IEEE Transactions on Power Electronics vol. 31 2890–2904 (2016) – 10.1109/tpel.2015.2450360
  • Guan, Y., Guerrero, J. M., Zhao, X., Vasquez, J. C. & Guo, X. A New Way of Controlling Parallel-Connected Inverters by Using Synchronous-Reference-Frame Virtual Impedance Loop—Part I: Control Principle. IEEE Transactions on Power Electronics vol. 31 4576–4593 (2016) – 10.1109/tpel.2015.2472279
  • Taher, S. A., Zolfaghari, M., Cho, C., Abedi, M. & Shahidehpour, M. A New Approach for Soft Synchronization of Microgrid Using Robust Control Theory. IEEE Transactions on Power Delivery vol. 32 1370–1381 (2017) – 10.1109/tpwrd.2016.2596106
  • Kim, J.-H., Lee, Y.-S., Kim, H.-J. & Han, B.-M. A New Reactive-Power Sharing Scheme for Two Inverter-Based Distributed Generations with Unequal Line Impedances in Islanded Microgrids. Energies vol. 10 1800 (2017) – 10.3390/en10111800
  • Caracas, J. V. M., Farias, G. C., de Matos, J. G., Simoes, F. & Ribeiro, L. A. de S. Adaptative Droop Control for Balancing the State of Charge of Multiple Energy Storage Systems in Decentralized Microgrids. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society 1658–1663 (2018) doi:10.1109/iecon.2018.8591697 – 10.1109/iecon.2018.8591697
  • X. Hou. Hou, X., Sun, Y., Han, H., Liu, Z., Yuan, W., Su, M. (2019). A fully decentralized control of grid-connected cascaded inverters. IEEE Transactions on Power Delivery, 10(1), 315–17. IEEE. (2019)
  • Sun, Y. et al. An <italic>f-P/Q</italic> Droop Control in Cascaded-Type Microgrid. IEEE Transactions on Power Systems vol. 33 1136–1138 (2018) – 10.1109/tpwrs.2017.2752646
  • J. Liu. Liu, J., Miura, Y., Ise, T. (2018). Cost-function-based microgrid decentralized control of unbalance and harmonics for simultaneous bus voltage compensation and current sharing. IEEE Transactions on Power Electronics, 99, 1–1. (2018)
  • Haider, S., Li, G. & Wang, K. A dual control strategy for power sharing improvement in islanded mode of AC microgrid. Protection and Control of Modern Power Systems vol. 3 (2018) – 10.1186/s41601-018-0084-2
  • Eskandari, M., Li, L. & Moradi, M. H. Decentralized Optimal Servo Control System for Implementing Instantaneous Reactive Power Sharing in Microgrids. IEEE Transactions on Sustainable Energy vol. 9 525–537 (2018) – 10.1109/tste.2017.2747515
  • Sun, Q., Sun, Q. & Qin, D. Adaptive Fuzzy Droop Control for Optimized Power Sharing in an Islanded Microgrid. Energies vol. 12 45 (2018) – 10.3390/en12010045
  • Kulkarni, O. V., Doolla, S. & Fernandes, B. G. Simple Controller Configuration for Decentralized Parallel Operation of Inverters. IEEE Transactions on Power Electronics vol. 34 1356–1369 (2019) – 10.1109/tpel.2018.2834621
  • Chen, Z., Pei, X., Yang, M. & Peng, L. An Adaptive Virtual Resistor (AVR) Control Strategy for Low-Voltage Parallel Inverters. IEEE Transactions on Power Electronics vol. 34 863–876 (2019) – 10.1109/tpel.2018.2815284
  • Yu, H., Tu, H. & Lukic, S. A passivity-based decentralized control strategy for current-controlled inverters in AC microgrids. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC) 1399–1406 (2018) doi:10.1109/apec.2018.8341200 – 10.1109/apec.2018.8341200
  • Li, L. et al. A Decentralized Control With Unique Equilibrium Point for Cascaded-Type Microgrid. IEEE Transactions on Sustainable Energy vol. 10 324–326 (2019) – 10.1109/tste.2018.2871641
  • M.C. Chandorkar. Chandorkar, M.C. (1995). Distributed Uninterruptible Power Supply Systems. Madison: University of Wisconsin-Madison. (1995)
  • G. Venkataramanan. Venkataramanan, G., & Illindala, M. (2007). Small signal dynamics of inverter interfaced distributed generation in a chain-microgrid. In Power Engineering Society General Meeting, 2007. IEEE. IEEE, Tampa, (pp. 1–6). (2007)
  • Mohamed, Y. & El-Saadany, E. F. Adaptive Decentralized Droop Controller to Preserve Power Sharing Stability of Paralleled Inverters in Distributed Generation Microgrids. IEEE Transactions on Power Electronics vol. 23 2806–2816 (2008) – 10.1109/tpel.2008.2005100
  • Iyer, S. V., Belur, M. N. & Chandorkar, M. C. A Generalized Computational Method to Determine Stability of a Multi-inverter Microgrid. IEEE Transactions on Power Electronics vol. 25 2420–2432 (2010) – 10.1109/tpel.2010.2048720
  • Tabesh, A. & Iravani, R. Multivariable Dynamic Model and Robust Control of a Voltage-Source Converter for Power System Applications. IEEE Transactions on Power Delivery vol. 24 462–471 (2009) – 10.1109/tpwrd.2008.923531
  • Barklund, E., Pogaku, N., Prodanovic, M., Hernandez-Aramburo, C. & Green, T. C. Energy Management in Autonomous Microgrid Using Stability-Constrained Droop Control of Inverters. IEEE Transactions on Power Electronics vol. 23 2346–2352 (2008) – 10.1109/tpel.2008.2001910
  • Delghavi, M. B. & Yazdani, A. Islanded-Mode Control of Electronically Coupled Distributed-Resource Units Under Unbalanced and Nonlinear Load Conditions. IEEE Transactions on Power Delivery vol. 26 661–673 (2011) – 10.1109/tpwrd.2010.2042081
  • Mehrizi-Sani, A. & Iravani, R. Potential-Function Based Control of a Microgrid in Islanded and Grid-Connected Modes. IEEE Transactions on Power Systems vol. 25 1883–1891 (2010) – 10.1109/tpwrs.2010.2045773
  • Soni, N., Doolla, S. & Chandorkar, M. C. Improvement of Transient Response in Microgrids Using Virtual Inertia. IEEE Transactions on Power Delivery vol. 28 1830–1838 (2013) – 10.1109/tpwrd.2013.2264738
  • N. Jayawarna. Jayawarna, N., Wu, X., Zhang, Y., Jenkins, N., Barnes, M. (2006). Stability of a microgrid. IET Conference Proceedings, (pp. 316–20(4)). Dublin: IET. (2006)
  • Katiraei, F., Iravani, M. R. & Lehn, P. W. Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources. IET Generation, Transmission & Distribution vol. 1 369–378 (2007) – 10.1049/iet-gtd:20045207
  • Pogaku, N., Prodanovic, M. & Green, T. C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Transactions on Power Electronics vol. 22 613–625 (2007) – 10.1109/tpel.2006.890003
  • Bottrell, N., Prodanovic, M. & Green, T. C. Dynamic Stability of a Microgrid With an Active Load. IEEE Transactions on Power Electronics vol. 28 5107–5119 (2013) – 10.1109/tpel.2013.2241455
  • Nasr-Azadani, E., Canizares, C. A., Olivares, D. E. & Bhattacharya, K. Stability Analysis of Unbalanced Distribution Systems With Synchronous Machine and DFIG Based Distributed Generators. IEEE Transactions on Smart Grid vol. 5 2326–2338 (2014) – 10.1109/tsg.2014.2321709
  • Sun, J. Guest Editorial - Special Issue on Modeling and Advanced Control in Power Electronics. IEEE Transactions on Power Electronics vol. 24 2415–2416 (2009) – 10.1109/tpel.2009.2035239
  • Sun, J. Impedance-Based Stability Criterion for Grid-Connected Inverters. IEEE Transactions on Power Electronics vol. 26 3075–3078 (2011) – 10.1109/tpel.2011.2136439
  • Rasheduzzaman, M. (2015). Small signal modeling and analysis of microgrid systems. Missouri University of Science and Technology.
  • Kasem Alaboudy, A. H., Zeineldin, H. H. & Kirtley, J. Microgrid Stability Characterization Subsequent to Fault-Triggered Islanding Incidents. IEEE Transactions on Power Delivery vol. 27 658–669 (2012) – 10.1109/tpwrd.2012.2183150
  • Kamel, R. M., Chaouachi, A. & Nagasaka, K. Detailed Analysis of Micro-Grid Stability during Islanding Mode under Different Load Conditions. Engineering vol. 03 508–516 (2011) – 10.4236/eng.2011.35059
  • E.N. Azadani. Azadani, E.N., Canizares, C., Bhattacharya, K. (2012). Modeling and stability analysis of distributed generation. In Power and Energy Society General Meeting, 2012 IEEE. IEEE, San Diego, (pp. 1–8). (2012)
  • Farrokhabadi, M., Canizares, C. A. & Bhattacharya, K. Frequency Control in Isolated/Islanded Microgrids Through Voltage Regulation. IEEE Transactions on Smart Grid vol. 8 1185–1194 (2017) – 10.1109/tsg.2015.2479576
  • Vasquez, J. C., Guerrero, J. M., Luna, A., Rodriguez, P. & Teodorescu, R. Adaptive Droop Control Applied to Voltage-Source Inverters Operating in Grid-Connected and Islanded Modes. IEEE Transactions on Industrial Electronics vol. 56 4088–4096 (2009) – 10.1109/tie.2009.2027921
  • Diaz, G., Gonzalez-Moran, C., Gomez-Aleixandre, J. & Diez, A. Scheduling of Droop Coefficients for Frequency and Voltage Regulation in Isolated Microgrids. IEEE Transactions on Power Systems vol. 25 489–496 (2010) – 10.1109/tpwrs.2009.2030425
  • Kim, J., Guerrero, J. M., Rodriguez, P., Teodorescu, R. & Nam, K. Mode Adaptive Droop Control With Virtual Output Impedances for an Inverter-Based Flexible AC Microgrid. IEEE Transactions on Power Electronics vol. 26 689–701 (2011) – 10.1109/tpel.2010.2091685
  • Wang, Z., Xia, M., Lemmon, M. (2013). Voltage stability of weak power distribution networks with inverter connected sources. In American Control Conference (ACC), 2013. IEEE, (pp. 6577–6582).
  • Schiffer, J., Ortega, R., Astolfi, A., Raisch, J. & Sezi, T. Conditions for stability of droop-controlled inverter-based microgrids. Automatica vol. 50 2457–2469 (2014)10.1016/j.automatica.2014.08.009
  • Y. Sun. Sun, Y., Huang, W., Wang, G., Wang, W., Wang, L., Zhang, D. (2012). Study of control strategy of dg based on nonlinear droop characteristic. In Electricity Distribution (CICED), 2012 China International Conference On. IEEE, Shanghai, (pp. 1–4). (2012)
  • Y. Zhang. Zhang, Y. (2017). Capacity-based adaptive droop control for battery energy storage operation. In Power & Energy Society General Meeting, 2017 IEEE. IEEE, Chicago, (pp. 1–5). (2017)
  • T. Zhang. Zhang, T., Orr, J.A., Emanuel, A.E. (2018). Adaptable energy storage system control for microgrid stability enhancement. In 2018 IEEE Power & Energy Society General Meeting (PESGM). IEEE, Portland, (pp. 1–5). (2018)
  • Majumder, R. Some Aspects of Stability in Microgrids. IEEE Transactions on Power Systems vol. 28 3243–3252 (2013) – 10.1109/tpwrs.2012.2234146
  • Shuai, Z. et al. Microgrid stability: Classification and a review. Renewable and Sustainable Energy Reviews vol. 58 167–179 (2016) – 10.1016/j.rser.2015.12.201
  • Solano, J., Rey, J. M., Bastidas-Rodríguez, J. D. & Hernández, A. I. Stability Issues in Microgrids. Microgrids Design and Implementation 287–310 (2018) doi:10.1007/978-3-319-98687-6_11 – 10.1007/978-3-319-98687-6_11
  • Pogaku, N., Prodanovic, M. & Green, T. C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Transactions on Power Electronics vol. 22 613–625 (2007) – 10.1109/tpel.2006.890003
  • Karimi, H., Davison, E. J. & Iravani, R. Multivariable Servomechanism Controller for Autonomous Operation of a Distributed Generation Unit: Design and Performance Evaluation. IEEE Transactions on Power Systems vol. 25 853–865 (2010) – 10.1109/tpwrs.2009.2031441
  • Karimi, H., Nikkhajoei, H. & Iravani, R. Control of an Electronically-Coupled Distributed Resource Unit Subsequent to an Islanding Event. IEEE Transactions on Power Delivery vol. 23 493–501 (2008) – 10.1109/tpwrd.2007.911189
  • Karimi, H., Yazdani, A. & Iravani, R. Robust Control of an Autonomous Four-Wire Electronically-Coupled Distributed Generation Unit. IEEE Transactions on Power Delivery vol. 26 455–466 (2011) – 10.1109/tpwrd.2010.2064184
  • Karimi, H., Yazdani, A. & Iravani, R. Robust Control of an Autonomous Four-Wire Electronically-Coupled Distributed Generation Unit. IEEE Transactions on Power Delivery vol. 26 455–466 (2011) – 10.1109/tpwrd.2010.2064184
  • Sadabadi, M. S., Karimi, A. & Karimi, H. Fixed-order decentralized/distributed control of islanded inverter-interfaced microgrids. Control Engineering Practice vol. 45 174–193 (2015) – 10.1016/j.conengprac.2015.09.003
  • Babazadeh, M. & Karimi, H. A Robust Two-Degree-of-Freedom Control Strategy for an Islanded Microgrid. IEEE Transactions on Power Delivery vol. 28 1339–1347 (2013) – 10.1109/tpwrd.2013.2254138
  • Bahrani, B., Saeedifard, M., Karimi, A. & Rufer, A. A Multivariable Design Methodology for Voltage Control of a Single-DG-Unit Microgrid. IEEE Transactions on Industrial Informatics vol. 9 589–599 (2013) – 10.1109/tii.2012.2221129
  • Serra, F. M. & De Angelo, C. H. IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions. Electric Power Systems Research vol. 142 12–19 (2017) – 10.1016/j.epsr.2016.08.041
  • Weiss, G., Zhong, Q.-C., Green, T. C. & Liang, J. &gt;tex&lt;$H^infty$&gt;/tex&lt;Repetitive Control of DC-AC Converters in Microgrids. IEEE Transactions on Power Electronics vol. 19 219–230 (2004) – 10.1109/tpel.2003.820561
  • Li, Y. W., Vilathgamuwa, D. M. & Loh, P. C. Robust Control Scheme for a Microgrid With PFC Capacitor Connected. IEEE Transactions on Industry Applications vol. 43 1172–1182 (2007) – 10.1109/tia.2007.904388
  • Moradi, R., Karimi, H. & Karimi-Ghartemani, M. Robust decentralized control for islanded operation of two radially connected DG systems. 2010 IEEE International Symposium on Industrial Electronics 2272–2277 (2010) doi:10.1109/isie.2010.5637651 – 10.1109/isie.2010.5637651
  • Schiffer, J., Anta, A., Trung, T. D., Raisch, J. & Sezi, T. On power sharing and stability in autonomous inverter-based microgrids. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 1105–1110 (2012) doi:10.1109/cdc.2012.6426704 – 10.1109/cdc.2012.6426704
  • Andreasson, M., Sandberg, H., Dimarogonas, D. V. & Johansson, K. H. Distributed integral action: Stability analysis and frequency control of power systems. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 2077–2083 (2012) doi:10.1109/cdc.2012.6426463 – 10.1109/cdc.2012.6426463
  • Taher, S. A. & Zolfaghari, M. Designing robust controller to improve current-sharing for parallel-connected inverter-based DGs considering line impedance impact in microgrid networks. International Journal of Electrical Power & Energy Systems vol. 63 625–644 (2014) – 10.1016/j.ijepes.2014.06.035
  • van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014)10.1561/2600000002
  • van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
  • Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-010.1007/978-3-642-03196-0
  • Zonetti, D., Ortega, R. & Benchaib, A. Modeling and control of HVDC transmission systems from theory to practice and back. Control Engineering Practice vol. 45 133–146 (2015)10.1016/j.conengprac.2015.09.012
  • Zonetti, D. (2016). Energy-based modelling and control of electric power systems with guaranteed stability properties. PhD thesis, Université Paris-Saclay. Universit’e Paris-Saclay.
  • Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013)10.1016/j.ejcon.2013.09.002
  • van der Schaft, A. & Stegink, T. Perspectives in modeling for control of power networks. Annual Reviews in Control vol. 41 119–132 (2016)10.1016/j.arcontrol.2016.04.017
  • C. De Persis. De Persis, C., Monshizadeh, N., Schiffer, J., Dörfler, F. (2016). A lyapunov approach to control of microgrids with a network-preserved differential-algebraic model. In Proceedings of IEEE Conference on Decision and Control. IEEE, Las Vegas, (pp. 2595–2600). (2016)
  • L. Yan-Hong. Yan-Hong, L., Chun-Wen, L., Yu-Zhen, W. (2009). Decentralized excitation control of multi-machine multi-load power systems using hamiltonian function method. Acta Automatica Sinica, 35(7), 919–925. (2009)
  • Xi, Z., Cheng, D., Lu, Q. & Mei, S. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica vol. 38 527–534 (2002) – 10.1016/s0005-1098(01)00233-3
  • Arghir, C., Groß, D. & Dörfler, F. On the steady-state behavior of a nonlinear power network model. IFAC-PapersOnLine vol. 49 61–66 (2016)10.1016/j.ifacol.2016.10.373
  • Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters vol. 56 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
  • Desoer, C. A. & Vidyasagar, M. Feedback Systems. (2009) doi:10.1137/1.9780898719055 – 10.1137/1.9780898719055
  • R.H. Lasseter. Lasseter, R.H. (2002). Microgrids. In Power Engineering Society Winter Meeting, 2002. IEEE, vol.1. IEEE, New York, (pp. 305–308). (2002)
  • M. Shahidehpour. Shahidehpour, M. (2010). Role of smart microgrid in a perfect power system. In Power and Energy Society General Meeting, 2010 IEEE. IEEE, Providence, (pp. 1–1). (2010)
  • Farhangi, H. The path of the smart grid. IEEE Power and Energy Magazine vol. 8 18–28 (2010) – 10.1109/mpe.2009.934876
  • Khodayar, M. E., Barati, M. & Shahidehpour, M. Integration of High Reliability Distribution System in Microgrid Operation. IEEE Transactions on Smart Grid vol. 3 1997–2006 (2012) – 10.1109/tsg.2012.2213348
  • Jouini, T., Arghir, C. & Dörfler, F. Grid-Friendly Matching of Synchronous Machines by Tapping into the DC Storage. IFAC-PapersOnLine vol. 49 192–197 (2016) – 10.1016/j.ifacol.2016.10.395
  • K. Rudion. Rudion, K., Orths, A., Styczynski, Z.A., Strunz, K. (2006). Design of benchmark of medium voltage distribution network for investigation of dg integration. In Power Engineering Society General Meeting, 2006. IEEE. IEEE, Montreal, (p. 6). (2006)