Modeling and control of HVDC transmission systems from theory to practice and back
Authors
Daniele Zonetti, Romeo Ortega, Abdelkrim Benchaib
Abstract
The problem of modeling and control of multi-terminal high-voltage direct-current transmission systems is addressed in this paper, which contains five main contributions. First, to propose a unified, physically motivated, modeling framework — based on port-Hamiltonian representations — of the various network topologies used in this application. Second, to prove that the system can be globally asymptotically stabilized with a decentralized PI control that exploits its passivity properties. Close connections between the proposed PI and the popular Akagi’s PQ instantaneous power method are also established. Third, to reveal the transient performance limitations of the proposed controller that, interestingly, is shown to be intrinsic to PI passivity-based control. Fourth, motivated by the latter, an outer-loop that overcomes the aforementioned limitations is proposed. The performance limitation of the PI, and its drastic improvement using outer-loop controls, is verified via simulations on a three-terminal benchmark example. A final contribution is a novel formulation of the power flow equations for the centralized references calculation.
Keywords
Multi-terminal HVDC transmission systems; Passivity-based control; Port-Hamiltonian systems; PI control; Nonminimum-phase systems; PQ and DC voltage control; Performance limitations; Power flow equations
Citation
- Journal: Control Engineering Practice
- Year: 2015
- Volume: 45
- Issue:
- Pages: 133–146
- Publisher: Elsevier BV
- DOI: 10.1016/j.conengprac.2015.09.012
BibTeX
@article{Zonetti_2015,
title={{Modeling and control of HVDC transmission systems from theory to practice and back}},
volume={45},
ISSN={0967-0661},
DOI={10.1016/j.conengprac.2015.09.012},
journal={Control Engineering Practice},
publisher={Elsevier BV},
author={Zonetti, Daniele and Ortega, Romeo and Benchaib, Abdelkrim},
year={2015},
pages={133--146}
}
References
- Abbas, A. M. & Lehn, P. W. PWM based VSC-HVDC systems — A review. 2009 IEEE Power & Energy Society General Meeting 1–9 (2009) doi:10.1109/pes.2009.5275751 – 10.1109/pes.2009.5275751
- Andreasson, M. et al. Distributed Voltage and Current Control of Multi-Terminal High-Voltage Direct Current Transmission Systems. IFAC Proceedings Volumes vol. 47 11910–11916 (2014) – 10.3182/20140824-6-za-1003.02316
- Akagi, (2007)
- Bucher, M. K., Wiget, R., Andersson, G. & Franck, C. M. Multiterminal HVDC Networks—What is the Preferred Topology? IEEE Transactions on Power Delivery vol. 29 406–413 (2014) – 10.1109/tpwrd.2013.2277552
- Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control vol. 36 1228–1240 (1991) – 10.1109/9.100932
- Carrasco, J. M. et al. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Transactions on Industrial Electronics vol. 53 1002–1016 (2006) – 10.1109/tie.2006.878356
- Chen, Y., Dai, J., Damm, G. & Lamnabhi-Lagarrigue, F. Nonlinear control design for a multi-terminal VSC-HVDC system. 2013 European Control Conference (ECC) 3536–3541 (2013) doi:10.23919/ecc.2013.6669665 – 10.23919/ecc.2013.6669665
- Egea-Alvarez, A., Beerten, J., Van Hertem, D. & Gomis-Bellmunt, O. Primary and secondary power control of multiterminal HVDC grids. 10th IET International Conference on AC and DC Power Transmission (ACDC 2012) 09–09 (2012) doi:10.1049/cp.2012.1989 – 10.1049/cp.2012.1989
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica vol. 35 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Flourentzou, N., Agelidis, V. G. & Demetriades, G. D. VSC-Based HVDC Power Transmission Systems: An Overview. IEEE Transactions on Power Electronics vol. 24 592–602 (2009) – 10.1109/tpel.2008.2008441
- Francis, B. & Zames, G. On H<sup>∞</sup>-optimal sensitivity theory for SISO feedback systems. IEEE Transactions on Automatic Control vol. 29 9–16 (1984) – 10.1109/tac.1984.1103357
- Gellings, C. W. A globe spanning super grid. IEEE Spectrum vol. 52 48–54 (2015) – 10.1109/mspec.2015.7164402
- Gomis-Bellmunt, O., Liang, J., Ekanayake, J., King, R. & Jenkins, N. Topologies of multiterminal HVDC-VSC transmission for large offshore wind farms. Electric Power Systems Research vol. 81 271–281 (2011) – 10.1016/j.epsr.2010.09.006
- Hammerstrom, D. J. AC Versus DC Distribution SystemsDid We Get it Right? 2007 IEEE Power Engineering Society General Meeting (2007) doi:10.1109/pes.2007.386130 – 10.1109/pes.2007.386130
- Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F. & Escobar, G. Adaptive PI Stabilization of Switched Power Converters. IEEE Transactions on Control Systems Technology vol. 18 688–698 (2010) – 10.1109/tcst.2009.2023669
- Isidori, (1995)
- JAGERWALDAU, A. Photovoltaics and renewable energies in Europe. Renewable and Sustainable Energy Reviews vol. 11 1414–1437 (2007) – 10.1016/j.rser.2005.11.001
- Jayawardhana, B., Ortega, R., Garcia-Canseco, E. & Castanos, F. Passivity of Nonlinear Incremental Systems: Application to PI Stabilization of Nonlinear RLC Circuits. Proceedings of the 45th IEEE Conference on Decision and Control 3808–3812 (2006) doi:10.1109/cdc.2006.377132 – 10.1109/cdc.2006.377132
- Kazmierkowski, (2002)
- Kirby, N. M. HVDC transmission for large offshore windfarms. Seventh International Conference on AC and DC Transmission vol. 2001 162–168 (2001) – 10.1049/cp:20010536
- Lee, Input-output linearization and zero-dynamics control of three-phase AC/DC voltage-source converters. IEEE Transactions on Power Electronics (2003)
- Lund, H. Large-scale integration of wind power into different energy systems. Energy vol. 30 2402–2412 (2005) – 10.1016/j.energy.2004.11.001
- Perez, M., Ortega, R. & Espinoza, J. Passivity-Based PI Control of Switched Power Converters. IEEE Transactions on Control Systems Technology vol. 12 881–890 (2004) – 10.1109/tcst.2004.833628
- Qui, Performance limitations of non-minimum phase systems in the servomechanism problem. Automatica (1993)
- Sanchez, S., Ortega, R., Grino, R., Bergna, G. & Molinas, M. Conditions for Existence of Equilibria of Systems With Constant Power Loads. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 61 2204–2211 (2014) – 10.1109/tcsi.2013.2295953
- Sanders, S. R. & Verghese, G. C. Lyapunov-based control for switched power converters. IEEE Transactions on Power Electronics vol. 7 17–24 (1992) – 10.1109/63.124573
- Shah, S., Hassan, R. & Sun, J. HVDC transmission system architectures and control - A review. 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL) 1–8 (2013) doi:10.1109/compel.2013.6626396 – 10.1109/compel.2013.6626396
- Thomas, J. L. Analysis of a robust DC-bus voltage control system for a VSC transmission scheme. Seventh International Conference on AC and DC Transmission vol. 2001 119–124 (2001) – 10.1049/cp:20010529
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. Characterization and partial synthesis of the behavior of resistive circuits at their terminals. Systems & Control Letters vol. 59 423–428 (2010) – 10.1016/j.sysconle.2010.05.005
- van der Schaft, (2014)
- Peng Wang, Goel, L., Xiong Liu & Fook Hoong Choo. Harmonizing AC and DC: A Hybrid AC/DC Future Grid Solution. IEEE Power and Energy Magazine vol. 11 76–83 (2013) – 10.1109/mpe.2013.2245587
- Yazdani, (2010)
- Zhao, J. & Dorfler, F. Distributed control, load sharing, and dispatch in DC microgrids. 2015 American Control Conference (ACC) 3304–3309 (2015) doi:10.1109/acc.2015.7171842 – 10.1109/acc.2015.7171842
- Zonetti, D., Ortega, R. & Benchaib, A. A globally asymptotically stable decentralized PI controller for multi-terminal high-voltage DC transmission systems. 2014 European Control Conference (ECC) 1397–1403 (2014) doi:10.1109/ecc.2014.6862419 – 10.1109/ecc.2014.6862419