Safety Analysis of Automotive Control Systems Using Multi-Modal Port-Hamiltonian Systems
Authors
Siyuan Dai, Xenofon Koutsoukos
Abstract
Safety analysis is important when designing and developing cyber-physical systems (CPS). An autonomous vehicle can be described as a complex CPS where the physical dynamics of the vehicle interact with the control systems. The challenge is ensuring safety despite nonlinearities, hybrid dynamics, and disturbances as well as complex cyber-physical interactions. In this paper, we present an approach for the safety analysis of automotive control systems using multimodal port-Hamiltonian systems (PHS). The approach uses the Hamiltonian function to represent the energy of the safe and unsafe states and employs passivity to prove that trajectories that begin in safe regions cannot enter unsafe regions. We first apply the approach to the safety analysis of a longitudinal vehicle dynamics composed with an adaptive cruise control (ACC) system. We then extend the results to the safety analysis of a combined longitudinal and lateral vehicle dynamics composed with an ACC and lane keeping control (LKC) system. Simulation results are presented to demonstrate the approach.
Citation
- Journal: Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control
- Year: 2016
- Volume:
- Issue:
- Pages: 105–114
- Publisher: ACM
- DOI: 10.1145/2883817.2883845
BibTeX
@inproceedings{Dai_2016,
series={HSCC’16},
title={{Safety Analysis of Automotive Control Systems Using Multi-Modal Port-Hamiltonian Systems}},
DOI={10.1145/2883817.2883845},
booktitle={{Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control}},
publisher={ACM},
author={Dai, Siyuan and Koutsoukos, Xenofon},
year={2016},
pages={105--114},
collection={HSCC’16}
}
References
- Ames, A. D., Grizzle, J. W. & Tabuada, P. Control barrier function based quadratic programs with application to adaptive cruise control. 53rd IEEE Conference on Decision and Control 6271–6278 (2014) doi:10.1109/cdc.2014.7040372 – 10.1109/cdc.2014.7040372
- CarSim. http://www.carsim.com . Mechanical Simulation Corporation , Ann Arbor, MI, USA , 2013 . CarSim. http://www.carsim.com. Mechanical Simulation Corporation, Ann Arbor, MI, USA, 2013. (2013)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Dai, S. & Koutsoukos, X. Model-based automotive control design using port-Hamiltonian systems. 2015 International Conference on Complex Systems Engineering (ICCSE) 1–6 (2015) doi:10.1109/complexsys.2015.7385987 – 10.1109/complexsys.2015.7385987
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Eyisi, E. et al. Model-Based Control Design and Integration of Cyberphysical Systems: An Adaptive Cruise Control Case Study. Journal of Control Science and Engineering vol. 2013 1–15 (2013) – 10.1155/2013/678016
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Khalil H.. H. Khalil . Nonlinear Systems , 3 rd Edition. Prentice Hall , Upper Saddle River, NJ, 2002 . H. Khalil. Nonlinear Systems, 3rd Edition. Prentice Hall, Upper Saddle River, NJ, 2002. (2002)
- MATLAB.. MATLAB. Version R2012a, http://www.mathworks.com. The Mathworks, Inc. , Natick, MA, USA , 2012 . MATLAB. Version R2012a, http://www.mathworks.com. The Mathworks, Inc., Natick, MA, USA, 2012. (2012)
- Prajna, S. Barrier certificates for nonlinear model validation. Automatica vol. 42 117–126 (2006) – 10.1016/j.automatica.2005.08.007
- Prajna, S. & Jadbabaie, A. Safety Verification of Hybrid Systems Using Barrier Certificates. Lecture Notes in Computer Science 477–492 (2004) doi:10.1007/978-3-540-24743-2_32 – 10.1007/978-3-540-24743-2_32
- Prajna, S., Jadbabaie, A. & Pappas, G. J. A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates. IEEE Transactions on Automatic Control vol. 52 1415–1428 (2007) – 10.1109/tac.2007.902736
- Prajna, S., Papachristodoulou, A. & Parrilo, P. A. Introducing SOSTOOLS: a general purpose sum of squares programming solver. Proceedings of the 41st IEEE Conference on Decision and Control, 2002. vol. 1 741–746 – 10.1109/cdc.2002.1184594
- Prajna, S. & Rantzer, A. Primal–Dual Tests for Safety and Reachability. Lecture Notes in Computer Science 542–556 (2005) doi:10.1007/978-3-540-31954-2_35 – 10.1007/978-3-540-31954-2_35
- Rajamani R.. R. Rajamani . Vehicle Dynamics and Control . Springer , New York, NY , 2006 . R. Rajamani. Vehicle Dynamics and Control. Springer, New York, NY, 2006. (2006)
- Sloth, C., Pappas, G. J. & Wisniewski, R. Compositional safety analysis using barrier certificates. Proceedings of the 15th ACM international conference on Hybrid Systems: Computation and Control 15–24 (2012) doi:10.1145/2185632.2185639 – 10.1145/2185632.2185639
- Sztipanovits, J. et al. Toward a Science of Cyber–Physical System Integration. Proceedings of the IEEE vol. 100 29–44 (2012) – 10.1109/jproc.2011.2161529
- van der Schaft A.. A. van der Schaft . Port-hamiltonian systems : Network modeling and control of nonlinear physical systems . In Advanced Dynamics and Control of Structures and Machines. CISM Courses and Lectures No. 444 , CISM International Centre for Mechanical Sciences, pages 127 – 168 , New York, NY, USA, 2004 . Springer . A. van der Schaft. Port-hamiltonian systems: Network modeling and control of nonlinear physical systems. In Advanced Dynamics and Control of Structures and Machines. CISM Courses and Lectures No. 444, CISM International Centre for Mechanical Sciences, pages 127–168, New York, NY, USA, 2004. Springer. (2004)