Robust Stable Limit Cycle Generation in Multi-Input Mechanical Systems
Authors
Tahereh Binazadeh, Mahsa Karimi
Abstract
This paper proposes a robust controller for the generation of stable limit cycles in multi-input mechanical systems subjected to model uncertainties. The proposed idea is based on Port-Controlled Hamiltonian (PCH) model and energy-based control by considering the Hamiltonian function as the Lyapunov function. For this purpose, first, a nominal controller is designed by shaping the energy function of the system according to the structure of the desired limit cycle. Then, an additional robustifying control term is designed based on the integral sliding mode method with the selection of an appropriate sliding surface. Finally, computer simulations for two practical case studies are provided to confirm the effectiveness of the proposed controller in the generation of stable limit cycles in the presence of uncertainties.
Citation
- Journal: Robotica
- Year: 2021
- Volume: 39
- Issue: 7
- Pages: 1316–1327
- Publisher: Cambridge University Press (CUP)
- DOI: 10.1017/s0263574720001198
BibTeX
@article{Binazadeh_2021,
title={{Robust Stable Limit Cycle Generation in Multi-Input Mechanical Systems}},
volume={39},
ISSN={1469-8668},
DOI={10.1017/s0263574720001198},
number={7},
journal={Robotica},
publisher={Cambridge University Press (CUP)},
author={Binazadeh, Tahereh and Karimi, Mahsa},
year={2021},
pages={1316--1327}
}
References
- Binazadeh, T. & Shafiei, M. H. Output tracking of uncertain fractional-order nonlinear systems via a novel fractional-order sliding mode approach. Mechatronics 23, 888–892 (2013) – 10.1016/j.mechatronics.2013.04.009
- Geyer, H., Seyfarth, A. & Blickhan, R. Compliant leg behaviour explains basic dynamics of walking and running. Proc. R. Soc. B. 273, 2861–2867 (2006) – 10.1098/rspb.2006.3637
- Mohammadpour, S. & Binazadeh, T. Observer-based synchronization of uncertain chaotic systems subject to input saturation. Transactions of the Institute of Measurement and Control 40, 2526–2535 (2017) – 10.1177/0142331217705435
- Aguilar-Ibánez, C., Martinez, J. C., Rubio, J. de J. & Suarez-Castanon, M. S. Inducing sustained oscillations in feedback-linearizable single-input nonlinear systems. ISA Transactions 54, 117–124 (2015) – 10.1016/j.isatra.2014.03.012
- Hakimi, Robust limit cycle generation in nonlinear dynamical systems with nominal performance recovery. J. Comput. Nonlinear Dyn. (2019)
- Reza Hakimi, A. & Binazadeh, T. Robust Generation of Limit Cycles in Nonlinear Systems: Application on Two Mechanical Systems. Journal of Computational and Nonlinear Dynamics 12, (2017) – 10.1115/1.4035190
- Binazadeh, T., Karimi, M. & Tavakolpour‐Saleh, A. R. Robust control approach for handling matched and/or unmatched uncertainties in port‐controlled Hamiltonian systems. IET Cyber-Syst and Robotics 1, 73–80 (2019) – 10.1049/iet-csr.2019.0019
- Zarei, On event-triggered tracking for non-linear SISO systems via sliding mode control. IMA J. Math. Control Inform. (2020)
- Hakimi, A. R. & Binazadeh, T. Generation of stable oscillations in uncertain nonlinear systems with matched and unmatched uncertainties. International Journal of Control 92, 163–174 (2017) – 10.1080/00207179.2017.1364427
- McGeer, T. Passive Dynamic Walking. The International Journal of Robotics Research 9, 62–82 (1990) – 10.1177/027836499000900206
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Jafari, E. & Binazadeh, T. Low-conservative robust composite nonlinear feedback control for singular time-delay systems. Journal of Vibration and Control 27, 2109–2122 (2020) – 10.1177/1077546320953736
- Shiravani, F. & Shafiei, M. H. Robust Output Regulation Via Sliding Mode Control and Disturbance Observer: Application in a Forced Van Der Pol Chaotic Oscillator. Journal of Dynamic Systems, Measurement, and Control 139, (2017) – 10.1115/1.4036235
- Komijani, H., Masoumnezhad, M., Zanjireh, M. M. & Mir, M. Robust Hybrid Fractional Order Proportional Derivative Sliding Mode Controller for Robot Manipulator Based on Extended Grey Wolf Optimizer. Robotica 38, 605–616 (2019) – 10.1017/s0263574719000882
- Binazadeh, Finite-time tracker design for uncertain nonlinear fractional-order systems. J. Comput. Nonlinear Dyn. (2016)
- Hakimi, A. R. & Binazadeh, T. Sustained oscillations in MIMO nonlinear systems through limit cycle shaping. Intl J Robust & Nonlinear 30, 587–608 (2019) – 10.1002/rnc.4784
- Valentinis, F., Donaire, A. & Perez, T. Energy-based motion control of a slender hull unmanned underwater vehicle. Ocean Engineering 104, 604–616 (2015) – 10.1016/j.oceaneng.2015.05.014
- Hakimi, A. R. & Binazadeh, T. Limit Cycle Synchronization of Nonlinear Systems with Matched and Unmatched Uncertainties Based on Finite-Time Disturbance Observer. Circuits Syst Signal Process 38, 5488–5507 (2019) – 10.1007/s00034-019-01134-w
- Binazadeh, T. & Bahmani, M. Robust time-varying output tracking control in the presence of actuator saturation. Transactions of the Institute of Measurement and Control 40, 61–70 (2016) – 10.1177/0142331216650022
- Binazadeh, T. & Hakimi, A. R. Adaptive generation of limit cycles in a class of nonlinear systems with unknown parameters and dead-zone nonlinearity. International Journal of Systems Science 51, 3134–3145 (2020) – 10.1080/00207721.2020.1808733
- Hakimi, A. & Binazadeh, T. Inducing sustained oscillations in a class of nonlinear discrete time systems. Journal of Vibration and Control 24, 1162–1170 (2016) – 10.1177/1077546316659223
- Dizaji, A. F., Sepiani, H. A., Ebrahimi, F., Allahverdizadeh, A. & Sepiani, H. A. Schauder fixed point theorem based existence of periodic solution for the response of Duffing’s oscillator. J Mech Sci Technol 23, 2299–2307 (2009) – 10.1007/s12206-009-0501-6
- Hakimi, Generation of stable and robust limit cycle in the uncertain nonlinear systems using sliding mode controller. Tabriz J. Electr. Eng. (2017)
- Haddad, W. M. & Chellaboina, V. Nonlinear Dynamical Systems and Control. (2008) doi:10.1515/9781400841042 – 10.1515/9781400841042
- Ren, J., McIsaac, K. A. & Patel, R. V. Modified Newton’s method applied to potential field-based navigation for nonholonomic robots in dynamic environments. Robotica 26, 117–127 (2008) – 10.1017/s0263574707003694
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes 25, 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Oliveira, N. M. F., Kienitz, K. H. & Misawa, E. A. A describing function approach to the design of robust limit-cycle controllers. Nonlinear Dyn 67, 357–363 (2011) – 10.1007/s11071-011-9983-8
- Karimi, M. & Binazadeh, T. Energy-based Hamiltonian approach in H∞ controller design for n-degree of freedom mechanical systems. Systems Science & Control Engineering 7, 264–275 (2019) – 10.1080/21642583.2019.1649216
- Azhdari, Adaptive robust tracker design for nonlinear sandwich systems subject to saturation nonlinearities,. Robotica (2020)
- Castanos, F. & Fridman, L. Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Automat. Contr. 51, 853–858 (2006) – 10.1109/tac.2006.875008
- Shiriaev, A., Perram, J. W. & Canudas-de-Wit, C. Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach. IEEE Trans. Automat. Contr. 50, 1164–1176 (2005) – 10.1109/tac.2005.852568
- Garofalo, G., Ott, C. & Albu-Schaffer, A. Orbital stabilization of mechanical systems through semidefinite Lyapunov functions. 2013 American Control Conference 5715–5721 (2013) doi:10.1109/acc.2013.6580733 – 10.1109/acc.2013.6580733
- Herrmann, G., Jalani, J., Mahyuddin, M. N., Khan, S. G. & Melhuish, C. Robotic hand posture and compliant grasping control using operational space and integral sliding mode control. Robotica 34, 2163–2185 (2014) – 10.1017/s0263574714002811
- Ge, S. S., Lee, T. H. & Harris, C. J. Adaptive Neural Network Control of Robotic Manipulators. World Scientific Series in Robotics and Intelligent Systems (1998) doi:10.1142/3774 – 10.1142/3774
- Hakimi, A. R. & Binazadeh, T. Robust limit cycle control in a class of nonlinear discrete-time systems. International Journal of Systems Science 49, 3108–3116 (2018) – 10.1080/00207721.2018.1533599
- Hashimoto, Generation of optimal voltage reference for limit cycle oscillation in digital control-based switching power supply. J. Energy Power Eng. (2012)
- Yang, Energy-based nonlinear adaptive control design for the quadrotor UAV system with a suspended payload. IEEE Trans. Ind. Electron. (2054–2064 (2019)
- Garofalo, G. & Ott, C. Energy Based Limit Cycle Control of Elastically Actuated Robots. IEEE Trans. Automat. Contr. 62, 2490–2497 (2017) – 10.1109/tac.2016.2599781
- Teplinsky, Limit Cycles in a MEMS oscillator. IEEE Trans (2008)