Authors

M. Karimi, T. Binazadeh

Abstract

This paper studies the energy-based approach for controller design of -degree of freedom mechanical systems. In this approach, the Hamiltonian function, which is the sum of kinetic and potential energies of the system, is considered as the Lyapunov function for stability analysis. The stability analysis is done based on the port-controlled Hamiltonian (PCH) model. In this regard, two theorems are given and proved that the proposed controllers lead to disturbance attenuation for both absolutely known system model and unknown ones with parametric uncertainties. In the case of parametric uncertainties, the energy-based controller has an adaptive approach. Performance of proposed controllers is illustrated through simulations taken on a 2-link robot manipulator system, which validate the theoretical achievements of this paper.

Citation

  • Journal: Systems Science & Control Engineering
  • Year: 2019
  • Volume: 7
  • Issue: 1
  • Pages: 264–275
  • Publisher: Informa UK Limited
  • DOI: 10.1080/21642583.2019.1649216

BibTeX

@article{Karimi_2019,
  title={{Energy-based Hamiltonian approach in H∞ controller design for n-degree of freedom mechanical systems}},
  volume={7},
  ISSN={2164-2583},
  DOI={10.1080/21642583.2019.1649216},
  number={1},
  journal={Systems Science & Control Engineering},
  publisher={Informa UK Limited},
  author={Karimi, M. and Binazadeh, T.},
  year={2019},
  pages={264--275}
}

Download the bib file

References

  • Acho, L., Orlov, Y. & Solis, V. Non-linear measurement feedback H8-control of time-periodic systems with application to tracking control of robot manipulators. International Journal of Control 74, 190–198 (2001) – 10.1080/00207170150203516
  • Asadinia, M. S. & Binazadeh, T. Finite-Time Stabilization of Descriptor Time-Delay Systems with One-Sided Lipschitz Nonlinearities: Application to Partial Element Equivalent Circuit. Circuits Syst Signal Process 38, 5467–5487 (2019) – 10.1007/s00034-019-01129-7
  • Binazadeh, T. & Shafiei, M. H. Novel Approach in Nonlinear Autopilot Design. J. Aerosp. Eng. 29, (2016) – 10.1061/(asce)as.1943-5525.0000500
  • Chavez Guzmán, C. A., Aguilar Bustos, L. T. & Mérida Rubio, J. O. Analysis and Synthesis of Global Nonlinear H Controller for Robot Manipulators. Mathematical Problems in Engineering 2015, 1–9 (2015) – 10.1155/2015/410873
  • Chung W., Motion control (2008)
  • Delgado, S. & Kotyczka, P. Energy shaping for position and speed control of a wheeled inverted pendulum in reduced space. Automatica 74, 222–229 (2016) – 10.1016/j.automatica.2016.07.045
  • Erol, B. & Delibaşı, A. Fixed-order ℋ∞ controller design for MIMO systems via polynomial approach. Transactions of the Institute of Measurement and Control 41, 1985–1992 (2018) – 10.1177/0142331218792411
  • Ge, S. S., Lee, T. H. & Harris, C. J. Adaptive Neural Network Control of Robotic Manipulators. World Scientific Series in Robotics and Intelligent Systems (1998) doi:10.1142/3774 – 10.1142/3774
  • Gholami, H. & Binazadeh, T. Observer-based H∞ finite-time controller for time-delay nonlinear one-sided Lipschitz systems with exogenous disturbances. Journal of Vibration and Control 25, 806–819 (2018) – 10.1177/1077546318802422
  • Gholami, H. & Binazadeh, T. Robust Finite-Time H∞ Controller Design for Uncertain One-Sided Lipschitz Systems with Time-Delay and Input Amplitude Constraints. Circuits Syst Signal Process 38, 3020–3040 (2019) – 10.1007/s00034-018-01018-5
  • Reza Hakimi, A. & Binazadeh, T. Robust Generation of Limit Cycles in Nonlinear Systems: Application on Two Mechanical Systems. Journal of Computational and Nonlinear Dynamics 12, (2017) – 10.1115/1.4035190
  • Kelly R., Control of robot manipulators in joint space (2005)
  • Khalil H. K., Nonlinear control (2014)
  • Krstic M., Stabilization of nonlinear uncertain systems (1998)
  • Li, L. & Liao, F. Design of a robust H∞ preview controller for a class of uncertain discrete-time systems. Transactions of the Institute of Measurement and Control 40, 2639–2650 (2017) – 10.1177/0142331217708239
  • Maschke B., IFAC Symposium on NOLCOS (1992)
  • Orlov *, Y. & Aguilar, L. Non-smooth -position control of mechanical manipulators with frictional joints. International Journal of Control 77, 1062–1069 (2004) – 10.1080/0020717042000273087
  • Orlov, Y. V. & Aguilar, L. T. Advanced H∞ Control. Systems & Control: Foundations & Applications (Springer New York, 2014). doi:10.1007/978-1-4939-0292-7 – 10.1007/978-1-4939-0292-7
  • Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Shafiei, M. H. & Binazadeh, T. Movement control of a variable mass underwater vehicle based on multiple-modeling approach. Systems Science & Control Engineering 2, 335–341 (2014) – 10.1080/21642583.2014.901929
  • Shafiei, M. H. & Binazadeh, T. Application of neural network and genetic algorithm in identification of a model of a variable mass underwater vehicle. Ocean Engineering 96, 173–180 (2015) – 10.1016/j.oceaneng.2014.12.021
  • Subbotin, A. I. Generalized Solutions of First Order PDEs. System & Control: Foundations & Applications (Birkhäuser Boston, 1995). doi:10.1007/978-1-4612-0847-1 – 10.1007/978-1-4612-0847-1
  • Valentinis, F., Donaire, A. & Perez, T. Energy-based motion control of a slender hull unmanned underwater vehicle. Ocean Engineering 104, 604–616 (2015)10.1016/j.oceaneng.2015.05.014
  • van der Schaft, A. J. L/sub 2/-gain analysis of nonlinear systems and nonlinear state-feedback H/sub infinity / control. IEEE Trans. Automat. Contr. 37, 770–784 (1992) – 10.1109/9.256331
  • Yuzhen Wang & Shuzhi Sam Ge. Augmented Hamiltonian Formulation and Energy-Based Control Design of Uncertain Mechanical Systems. IEEE Trans. Contr. Syst. Technol. 16, 202–213 (2008) – 10.1109/tcst.2007.903367
  • Wang, Y., Yang, X. & Yan, H. Reliable Fuzzy Tracking Control of Near-Space Hypersonic Vehicle Using Aperiodic Measurement Information. IEEE Trans. Ind. Electron. 66, 9439–9447 (2019) – 10.1109/tie.2019.2892696
  • Wu, Y. & Lu, R. Event-Based Control for Network Systems via Integral Quadratic Constraints. IEEE Trans. Circuits Syst. I 65, 1386–1394 (2018) – 10.1109/tcsi.2017.2748971
  • Wu, Y., Lu, R., Shi, P., Su, H. & Wu, Z.-G. Analysis and Design of Synchronization for Heterogeneous Network. IEEE Trans. Cybern. 48, 1253–1262 (2018) – 10.1109/tcyb.2017.2688407
  • Yang, S. & Xian, B. Energy-Based Nonlinear Adaptive Control Design for the Quadrotor UAV System With a Suspended Payload. IEEE Trans. Ind. Electron. 67, 2054–2064 (2020) – 10.1109/tie.2019.2902834