Vision based control of aerial robotic vehicles using the port Hamiltonian framework
Authors
Robert Mahony, Stefano Stramigioli, Jochen Trumpf
Abstract
This paper investigates the formulation of sensor based control for aerial robotic vehicles based on the port Hamiltonian framework. The paper considers the particular case of vision based control and develops a model for an “infinite dimensional” visual energy port that uses optical flow in the image plane as a ‘velocity’ in the port Hamiltonian formalism.
Citation
- Journal: IEEE Conference on Decision and Control and European Control Conference
- Year: 2011
- Volume:
- Issue:
- Pages: 3526–3532
- Publisher: IEEE
- DOI: 10.1109/cdc.2011.6160558
BibTeX
@inproceedings{Mahony_2011,
title={{Vision based control of aerial robotic vehicles using the port Hamiltonian framework}},
DOI={10.1109/cdc.2011.6160558},
booktitle={{IEEE Conference on Decision and Control and European Control Conference}},
publisher={IEEE},
author={Mahony, Robert and Stramigioli, Stefano and Trumpf, Jochen},
year={2011},
pages={3526--3532}
}
References
- Srinivasan, M. V. et al. Robot navigation inspired by principles of insect vision. Robotics and Autonomous Systems 26, 203–216 (1999) – 10.1016/s0921-8890(98)00069-4
- Lim, J. & Barnes, N. Directions of egomotion from antipodal points. 2008 IEEE Conference on Computer Vision and Pattern Recognition 1–8 (2008) doi:10.1109/cvpr.2008.4587497 – 10.1109/cvpr.2008.4587497
- Coombs, D., Herman, M., Tsai-Hong Hong & Nashman, M. Real-time obstacle avoidance using central flow divergence, and peripheral flow. IEEE Trans. Robot. Automat. 14, 49–59 (1998) – 10.1109/70.660840
- McCarthy, C., Barnes, N. & Mahony, R. A Robust Docking Strategy for a Mobile Robot Using Flow Field Divergence. IEEE Trans. Robot. 24, 832–842 (2008) – 10.1109/tro.2008.926871
- schill, Estimating ego-motion in panoramic image sequences with inertial measurements. Proceedings of the International Symposium on Robotics Research (ISRR) (2009)
- lee, A Theorey of Visual Control of Braking Based on Information About Time to Collision (1976)
- hartley, Multiple View Geometry in Computer Vision (2000)
- Nelson, R. C. & Aloimonos, J. Obstacle avoidance using flow field divergence. IEEE Trans. Pattern Anal. Machine Intell. 11, 1102–1106 (1989) – 10.1109/34.42840
- Ruffier, F. & Franceschini, N. Optic flow regulation: the key to aircraft automatic guidance. Robotics and Autonomous Systems 50, 177–194 (2005) – 10.1016/j.robot.2004.09.016
- Srinivasan, M. V. & Zhang, S. VISUAL MOTOR COMPUTATIONS IN INSECTS. Annu. Rev. Neurosci. 27, 679–696 (2004) – 10.1146/annurev.neuro.27.070203.144343
- Fujita, M., Kawai, H. & Spong, M. W. Passivity-Based Dynamic Visual Feedback Control for Three-Dimensional Target Tracking: Stability and $L_{2}$-Gain Performance Analysis. IEEE Trans. Contr. Syst. Technol. 15, 40–52 (2007) – 10.1109/tcst.2006.883236
- Mahony, R., Corke, P. & Hamel, T. Dynamic Image-Based Visual Servo Control Using Centroid and Optic Flow Features. Journal of Dynamic Systems, Measurement, and Control 130, (2007) – 10.1115/1.2807085
- Hérissé, B., Hamel, T., Mahony, R. & Russotto, F.-X. A terrain-following control approach for a VTOL Unmanned Aerial Vehicle using average optical flow. Auton Robot 29, 381–399 (2010) – 10.1007/s10514-010-9208-x
- Humbert, J. S., Hyslop, A. & Chinn, M. Experimental validation of wide-field integration methods for autonomous navigation. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems 2144–2149 (2007) doi:10.1109/iros.2007.4399488 – 10.1109/iros.2007.4399488
- Beyeler, A., Zufferey, J.-C. & Floreano, D. Vision-based control of near-obstacle flight. Auton Robot 27, 201–219 (2009) – 10.1007/s10514-009-9139-6
- Moore, R. J. D., Thurrowgood, S., Bland, D., Soccol, D. & Srinivasan, M. V. A stereo vision system for UAV guidance. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems 3386–3391 (2009) doi:10.1109/iros.2009.5354152 – 10.1109/iros.2009.5354152
- beyeler, Optipilot: Control of takeoff and landing using optic flow. Proceedings of the European Micro Air Vehicle Conference and Competition 2009 (EMAV 2009) (2009)
- Herissé, B., Hamel, T., Mahony, R. & Russotto, F.-X. Landing a VTOL Unmanned Aerial Vehicle on a Moving Platform Using Optical Flow. IEEE Trans. Robot. 28, 77–89 (2012) – 10.1109/tro.2011.2163435
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- secchi, Control of Interactive Robotic Interfaces A Port-hamiltonian Approach Ser Springer Tracts in Advanced Robotics (2007)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Mahony, R., Schill, F., Corke, P. & Oh, Y. S. A new framework for force feedback teleoperation of robotic vehicles based on optical flow. 2009 IEEE International Conference on Robotics and Automation 1079–1085 (2009) doi:10.1109/robot.2009.5152452 – 10.1109/robot.2009.5152452
- samson, Robot Control The Task Function Approach Ser The Oxford Engineering Science Series (1991)
- Hutchinson, S., Hager, G. D. & Corke, P. I. A tutorial on visual servo control. IEEE Trans. Robot. Automat. 12, 651–670 (1996) – 10.1109/70.538972
- Kawai, H., Murao, T. & Fujita, M. Image-based dynamic visual feedback control via passivity approach. 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control 740–745 (2006) doi:10.1109/cacsd-cca-isic.2006.4776738 – 10.1109/cacsd-cca-isic.2006.4776738
- Espiau, B., Chaumette, F. & Rives, P. A new approach to visual servoing in robotics. IEEE Trans. Robot. Automat. 8, 313–326 (1992) – 10.1109/70.143350
- Barron, J. L., Fleet, D. J. & Beauchemin, S. S. Performance of optical flow techniques. Int J Comput Vision 12, 43–77 (1994) – 10.1007/bf01420984
- Astolfi, A., Liu Hsu, Netto, M. S. & Ortega, R. Two solutions to the adaptive visual servoing problem. IEEE Trans. Robot. Automat. 18, 387–392 (2002) – 10.1109/tra.2002.1019475
- Maruyama, A., Kawai, H. & Fujita, M. Stability and tracking performance of dynamic visual feedback control for nonlinear mechanical systems. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 5 4415–4420 – 10.1109/cdc.2001.980897
- schill, Virtual force feedback teleoperation of the insectbot using optic flow. Proceedings of the Australasian Conference on Robotics and Automation (2008)
- zergeroglu, Robust visual-servo control of robot manipulators in the presence of uncertainty. Proceedings of the 38th Conference on Decision and Control (1999)
- ortega, Passivity-based Control of Euler-lagrange Systems Mechanical Electrical and Electro-mechanical Applications Ser Communications and Control Engineering (1998)
- Kelly, R. Robust asymptotically stable visual servoing of planar robots. IEEE Trans. Robot. Automat. 12, 759–766 (1996) – 10.1109/70.538980
- Hamel, T. & Mahony, R. Visual servoing of an under-actuated dynamic rigid-body system: an image-based approach. IEEE Trans. Robot. Automat. 18, 187–198 (2002) – 10.1109/tra.2002.999647
- hamel, Robust visual servoing for under-actuated dynamic systems. Proceedings of the Conference on Decision and Control (2000)