Reduction of Stokes-Dirac structures and gauge symmetry in port-Hamiltonian systems
Authors
Marko Seslija, Arjan van der Schaft, Jacquelien M.A. Scherpen
Abstract
Stokes-Dirac structures are infinite-dimensional Dirac structures defined in terms of differential forms on a smooth manifold with boundary. These Dirac structures lay down a geometric framework for the formulation of Hamiltonian systems with a nonzero boundary energy flow. Simplicial triangulation of the underlaying manifold leads to the so-called simplicial Dirac structures, discrete analogues of Stokes-Dirac structures, and thus provides a natural framework for deriving finite-dimensional port-Hamiltonian systems that emulate their infinite-dimensional counterparts. The port-Hamiltonian systems defined with respect to Stokes-Dirac and simplicial Dirac structures exhibit gauge and a discrete gauge symmetry, respectively. In this paper, employing Poisson reduction we offer a unified technique for the symmetry reduction of a generalized canonical infinite-dimensional Dirac structure to the Poisson structure associated with Stokes-Dirac structures and of a fine-dimensional Dirac structure to simplicial Dirac structures. We demonstrate this Poisson scheme on a physical example of the vibrating string.
Keywords
Port-Hamiltonian systems; Poisson structures; Dirac structures; distributed-parameter systems; symmetry reduction
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2012
- Volume: 45
- Issue: 19
- Pages: 114–119
- Publisher: Elsevier BV
- DOI: 10.3182/20120829-3-it-4022.00030
- Note: 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control
BibTeX
@article{Seslija_2012,
title={{Reduction of Stokes-Dirac structures and gauge symmetry in port-Hamiltonian systems}},
volume={45},
ISSN={1474-6670},
DOI={10.3182/20120829-3-it-4022.00030},
number={19},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Seslija, Marko and van der Schaft, Arjan and Scherpen, Jacquelien M.A.},
year={2012},
pages={114--119}
}
References
- Blankenstein, G. & van der Schaft, A. J. Symmetry and reduction in implicit generalized Hamiltonian systems. Reports on Mathematical Physics 47, 57–100 (2001) – 10.1016/s0034-4877(01)90006-0
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dorfman, (1993)
- Macchelli, Port hamiltonian formulation of infinite dimensional systems: Part I modeling. Proc. 43rd IEEE Conf. Decision and Control (CDC) (2004)
- Schlacher, K. Mathematical modeling for nonlinear control: a Hamiltonian approach. Mathematics and Computers in Simulation 79, 829–849 (2008) – 10.1016/j.matcom.2008.02.011
- Schoberl, “On Casimir functionals for field theories in Port-Hamiltonian description for control purposes,”. (2011)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics 62, 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Vankerschaver, “Stokes-Dirac structures through reduction of infinite-dimensional Dirac structures,”. (2010)
- Yoshimura, H. & Marsden, J. E. Reduction of Dirac structures and the Hamilton-Pontryagin principle. Reports on Mathematical Physics 60, 381–426 (2007) – 10.1016/s0034-4877(08)00004-9