Positive feedback interconnection of Hamiltonian systems
Authors
Abstract
Recent results on counterclockwise input-output dynamics and negative-imaginary transfer matrices are interpreted from a geometric Hamiltonian systems point of view, providing additional insights and results.
Citation
- Journal: IEEE Conference on Decision and Control and European Control Conference
- Year: 2011
- Volume:
- Issue:
- Pages: 6510–6515
- Publisher: IEEE
- DOI: 10.1109/cdc.2011.6160395
BibTeX
@inproceedings{van_der_Schaft_2011,
title={{Positive feedback interconnection of Hamiltonian systems}},
DOI={10.1109/cdc.2011.6160395},
booktitle={{IEEE Conference on Decision and Control and European Control Conference}},
publisher={IEEE},
author={van der Schaft, A.J.},
year={2011},
pages={6510--6515}
}
References
- Xiong, J., Petersen, I. R. & Lanzon, A. A Negative Imaginary Lemma and the Stability of Interconnections of Linear Negative Imaginary Systems. IEEE Trans. Automat. Contr. 55, 2342–2347 (2010) – 10.1109/tac.2010.2052711
- van der Schaft, A. & Maschke, B. A Port-Hamiltonian Formulation of Open Chemical Reaction Networks. Lecture Notes in Control and Information Sciences 339–348 (2010) doi:10.1007/978-3-642-16135-3_27 – 10.1007/978-3-642-16135-3_27
- Wall, C. T. C. Geometric properties of generic differentiable manifolds. Lecture Notes in Mathematics 707–774 (1977) doi:10.1007/bfb0085382 – 10.1007/bfb0085382
- van der schaft, L2-gain and passivity techniques in nonlinear control, lect. Notes in Control & Information Sciences (1996)
- van der schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv fu?r Elektronik und U?bertragungstechnik (1995)
- van der Schaft, A. J. Observability and Controllability for Smooth Nonlinear Systems. SIAM J. Control Optim. 20, 338–354 (1982) – 10.1137/0320026
- van der Schaft, A. J. Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces. Journal of Mathematical Physics 24, 2095–2101 (1983) – 10.1063/1.525962
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Schaft, A. J. Hamiltonian dynamics with external forces and observations. Math. Systems Theory 15, 145–168 (1981) – 10.1007/bf01786977
- Angeli, D. Systems With Counterclockwise Input–Output Dynamics. IEEE Trans. Automat. Contr. 51, 1130–1143 (2006) – 10.1109/tac.2006.878747
- Angeli, D. Systems With Counterclockwise Input–Output Dynamics. IEEE Trans. Automat. Contr. 51, 1130–1143 (2006) – 10.1109/tac.2006.878747
- abraham, Foundations of Mechanics (1978)
- Feedback Control of Negative-Imaginary Systems. IEEE Control Syst. 30, 54–72 (2010) – 10.1109/mcs.2010.937676
- Hörmander, L. Fourier integral operators. I. Acta Math. 127, 79–183 (1971) – 10.1007/bf02392052
- Guillemin, V. & Sternberg, S. Some Problems in Integral Geometry and Some Related Problems in Micro-Local Analysis. American Journal of Mathematics 101, 915 (1979) – 10.2307/2373923
- brockett, Control theory and analytical mechanics. Geometric Control Theory (1977)
- Angeli, D. Multistability in Systems With Counter-Clockwise Input–Output Dynamics. IEEE Trans. Automat. Contr. 52, 596–609 (2007) – 10.1109/tac.2007.894507
- Padthe, A. K., JinHyoung Oh & Bernstein, D. S. Counterclockwise Dynamics of a Rate-Independent Semilinear Duhem Model. Proceedings of the 44th IEEE Conference on Decision and Control 8000–8005 doi:10.1109/cdc.2005.1583456 – 10.1109/cdc.2005.1583456
- Lanzon, A. & Petersen, I. R. Stability Robustness of a Feedback Interconnection of Systems With Negative Imaginary Frequency Response. IEEE Trans. Automat. Contr. 53, 1042–1046 (2008) – 10.1109/tac.2008.919567