Hamiltonian dynamics with external forces and observations
Authors
Abstract
In this paper a definition of a (nonlinear) Hamiltonian system with inputs and outputs is given, which generalizes both the definition of a linear Hamiltonian system with inputs and outputs and the differential geometric definition of a Hamiltonian vectorfield. Specialized to the case of Lagrangian systems this definition generates the Euler-Lagrange equations with external forces. Further interconnections of Hamiltonian systems are treated and the close relationship with network theory is showed. Finally the newly developed theory is applied to the study of symmetries and to a realization theory for Hamiltonian systems. It will be argued that this way of describing Hamiltonian systems can be extended to a broader class of physical systems.
Keywords
Computational Mathematic; External Force; Hamiltonian System; Physical System; Broad Class
Citation
- Journal: Mathematical Systems Theory
- Year: 1981
- Volume: 15
- Issue: 1
- Pages: 145–168
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/bf01786977
BibTeX
@article{Schaft_1981,
title={{Hamiltonian dynamics with external forces and observations}},
volume={15},
ISSN={1433-0490},
DOI={10.1007/bf01786977},
number={1},
journal={Mathematical Systems Theory},
publisher={Springer Science and Business Media LLC},
author={Schaft, A. J.},
year={1981},
pages={145--168}
}
References
- Hamel, G. Theoretische Mechanik. Grundlehren der mathematischen Wissenschaften (Springer Berlin Heidelberg, 1949). doi:10.1007/978-3-642-88463-4 – 10.1007/978-3-642-88463-4
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1978). doi:10.1007/978-1-4757-1693-1 – 10.1007/978-1-4757-1693-1
- J. C. Willems, NATO Adv. Study Institute and A.M.S. Summer Seminar in Appl. Math. on “Algebraic and Geometric Methods in Linear Systems Theory,” (1979)
- W. M. Tulczyjew, Symposia Mathematica (1974)
- Hermann, R. & Krener, A. Nonlinear controllability and observability. IEEE Trans. Automat. Contr. 22, 728–740 (1977) – 10.1109/tac.1977.1101601
- R. K. Brayton, SIAM-AMS Proceedings (1978)
- Weinstein, A. Lectures on Symplectic Manifolds. CBMS Regional Conference Series in Mathematics (1977) doi:10.1090/cbms/029 – 10.1090/cbms/029
- R. W. Brockett, Finite Dimensional Linear Systems (1970)
- Brockett, R. W. & Rahimi, A. LIE ALGEBRAS AND LINEAR DIFFERENTIAL EQUATIONS. Ordinary Differential Equations 379–386 (1972) doi:10.1016/b978-0-12-743650-0.50036-8 – 10.1016/b978-0-12-743650-0.50036-8
- van der Schaft, A. Symmetries and conservation laws for Hamiltonian systems with inputs and outputs: A generalization of Noether’s theorem. Systems & Control Letters 1, 108–115 (1981) – 10.1016/s0167-6911(81)80046-1