Position Control of McKibben-Type Pneumatic Artificial Muscle via Port-Hamiltonian Approach
Authors
Hiroaki Tanaka, Hayato Hirai, Koh Hosoda
Abstract
Pneumatic artificial muscles (PAMs) are soft actuators with softness and high power ratio. These characteristics provide a robot with adaptiveness and agility. However, controlling PAMs is difficult because they exhibit a highly nonlinear nature and involve complex multi-physical systems (i.e. mechanical and fluid systems). In particular, to achieve better control performance, the conventional approach suffers from estimating difficult-to-estimate parameters, such as the viscoelasticity of the PAM. To overcome the difficulty of controlling PAMs, this study utilized an interconnection and damping assignment passivity-based control (IDA-PBC) method via port-Hamiltonian (PH) framework. PH framework is well-suited for modeling PAMs because this framework describes the energy exchanges between the multi-physical systems of PMAs. In addition, the IDA-PBC method is a passivity based control that stabilizes the nonlinear systems. Loosely speaking, the feedback gain of the IDA-PBC method must be determined such that the PAM system is passive – that is, it either dissipates or conserves energy. Therefore, the PAM system can be stabilized without the precise viscoelastic parameters when the feedback gains are significantly higher than these parameters and ensure the system’s passivity. Several experiments compared our proposed control with comparison control methods. As a result, our proposed control followed the desired position with a smaller error than the other comparison methods across a wide range of target positions.
Citation
- Journal: IEEE Robotics and Automation Letters
- Year: 2025
- Volume: 10
- Issue: 6
- Pages: 6384–6391
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lra.2025.3567164
BibTeX
@article{Tanaka_2025,
title={{Position Control of McKibben-Type Pneumatic Artificial Muscle via Port-Hamiltonian Approach}},
volume={10},
ISSN={2377-3774},
DOI={10.1109/lra.2025.3567164},
number={6},
journal={IEEE Robotics and Automation Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Tanaka, Hiroaki and Hirai, Hayato and Hosoda, Koh},
year={2025},
pages={6384--6391}
}
References
- Ching-Ping Chou & Hannaford, B. Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Automat. 12, 90–102 (1996) – 10.1109/70.481753
- Hosoda, K., Sekimoto, S., Nishigori, Y., Takamuku, S. & Ikemoto, S. Anthropomorphic Muscular–Skeletal Robotic Upper Limb for Understanding Embodied Intelligence. Advanced Robotics 26, 729–744 (2012) – 10.1163/156855312x625371
- Tanaka, H., Matsumoto, O., Kawasetsu, T. & Hosoda, K. Swinging mass for energy-efficient quadrupedal locomotion. Advanced Robotics 37, 1042–1051 (2023) – 10.1080/01691864.2023.2228386
- Yamada, Y., Nishikawa, S., Shida, K., Niiyama, R. & Kuniyoshi, Y. Neural-body coupling for emergent locomotion: A musculoskeletal quadruped robot with spinobulbar model. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems 1499–1506 (2011) doi:10.1109/iros.2011.6094752 – 10.1109/iros.2011.6094752
- Minh, T. V., Tjahjowidodo, T., Ramon, H. & Van Brussel, H. Cascade position control of a single pneumatic artificial muscle–mass system with hysteresis compensation. Mechatronics 20, 402–414 (2010) – 10.1016/j.mechatronics.2010.03.001
- Aschemann, H. & Schindele, D. Sliding-Mode Control of a High-Speed Linear Axis Driven by Pneumatic Muscle Actuators. IEEE Trans. Ind. Electron. 55, 3855–3864 (2008) – 10.1109/tie.2008.2003202
- Robinson, R. M., Kothera, C. S., Sanner, R. M. & Wereley, N. M. Nonlinear Control of Robotic Manipulators Driven by Pneumatic Artificial Muscles. IEEE/ASME Trans. Mechatron. 21, 55–68 (2016) – 10.1109/tmech.2015.2483520
- Rezoug, A., Tondu, B., Hamerlain, M. & Tadjine, M. Adaptive fuzzy nonsingular terminal sliding mode controller for robot manipulator actuated by pneumatic artificial muscles. 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO) 334–339 (2013) doi:10.1109/robio.2013.6739481 – 10.1109/robio.2013.6739481
- Yeh, Y., Cisneros, N., Wu, Y., Rabenorosoa, K. & Gorrec, Y. L. Modeling and Position Control of the HASEL Actuator via Port-Hamiltonian Approach. IEEE Robot. Autom. Lett. 7, 7100–7107 (2022) – 10.1109/lra.2022.3181365
- Franco, E., Ayatullah, T., Sugiharto, A., Garriga-Casanovas, A. & Virdyawan, V. Nonlinear energy-based control of soft continuum pneumatic manipulators. Nonlinear Dyn 106, 229–253 (2021) – 10.1007/s11071-021-06817-1
- Liu, N., Wu, Y. & Le Gorrec, Y. Energy-Based Modeling of Ionic Polymer–Metal Composite Actuators Dedicated to the Control of Flexible Structures. IEEE/ASME Trans. Mechatron. 26, 3139–3150 (2021) – 10.1109/tmech.2021.3053609
- Caasenbrood, B., Pogromsky, A. & Nijmeijer, H. Energy-Shaping Controllers for Soft Robot Manipulators Through Port-Hamiltonian Cosserat Models. SN COMPUT. SCI. 3, (2022) – 10.1007/s42979-022-01373-w
- Daerden, F. & Lefeber, D. The Concept and Design of Pleated Pneumatic Artificial Muscles. International Journal of Fluid Power 2, 41–50 (2001) – 10.1080/14399776.2001.10781119
- Wirekoh, J. & Park, Y.-L. Design of flat pneumatic artificial muscles. Smart Mater. Struct. 26, 035009 (2017) – 10.1088/1361-665x/aa5496
- Sugimoto, Y., Naniwa, K., Osuka, K. & Sankai, Y. Static and dynamic properties of McKibben pneumatic actuator for self-stability of legged-robot motion. Advanced Robotics 27, 469–480 (2013) – 10.1080/01691864.2013.763007
- Klute, G. K. & Hannaford, B. Accounting for Elastic Energy Storage in McKibben Artificial Muscle Actuators. Journal of Dynamic Systems, Measurement, and Control 122, 386–388 (1998) – 10.1115/1.482478
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Hildebrandt, A., Sawodny, O., Neumann, R. & Hartmann, A. Cascaded control concept of a robot with two degrees of freedom driven by four artificial pneumatic muscle actuators. Proceedings of the 2005, American Control Conference, 2005. 680–685 doi:10.1109/acc.2005.1470036 – 10.1109/acc.2005.1470036
- Asai, H., Noda, T., Teramae, T. & Morimoto, J. Modeling Inverse Airflow Dynamics Toward Fast Movement Generation Using Pneumatic Artificial Muscle With Long Air Tubes. IEEE/ASME Trans. Mechatron. 29, 3038–3046 (2024) – 10.1109/tmech.2024.3400622
- Meng, D., Tao, G., Chen, J. & Ban, W. Modeling of a pneumatic system for high-accuracy position control. Proceedings of 2011 International Conference on Fluid Power and Mechatronics 505–510 (2011) doi:10.1109/fpm.2011.6045817 – 10.1109/fpm.2011.6045817
- Ljung, L. System Identification. Applied and Numerical Harmonic Analysis 163–173 (1998) doi:10.1007/978-1-4612-1768-8_11 – 10.1007/978-1-4612-1768-8_11
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking of a class of port Hamiltonian systems using Timed IDA-PBC technique. 2015 54th IEEE Conference on Decision and Control (CDC) 5037–5042 (2015) doi:10.1109/cdc.2015.7403007 – 10.1109/cdc.2015.7403007
- Ross, D., Nemitz, M. P. & Stokes, A. A. Controlling and Simulating Soft Robotic Systems: Insights from a Thermodynamic Perspective. Soft Robotics 3, 170–176 (2016) – 10.1089/soro.2016.0010