Authors

Dylan Ross, Markus P. Nemitz, Adam A. Stokes

Abstract

Soft robots are machines, and like all machines their function is to convert energy from one form into another to perform tasks. One key figure of merit for machines is their efficiency, which is defined as the ratio of task-oriented work out to total energy in. All soft robots convert stored energy (from e.g., batteries, pressurized gas, chemicals) into task-oriented work (picking up objects, locomoting, jumping). These systems are complex hybrids of chemical, mechanical, pneumatic, hydraulic, and electrical components. This complexity makes it difficult to analyze and measure their total efficiency and to identify the sources of energy loss between chemical, electrical, and mechanical domains. As the field of soft robotics matures, the design-flow process will shift from one in which building is central to one in which simulation takes precedence. That is, there is a shift from an empirical experimental methodology toward a well-characterized engineering workflow. At this point, questions such …

Citation

  • Journal: Soft Robotics
  • Year: 2016
  • Volume: 3
  • Issue: 4
  • Pages: 170–176
  • Publisher: Mary Ann Liebert Inc
  • DOI: 10.1089/soro.2016.0010

BibTeX

@article{Ross_2016,
  title={{Controlling and Simulating Soft Robotic Systems: Insights from a Thermodynamic Perspective}},
  volume={3},
  ISSN={2169-5180},
  DOI={10.1089/soro.2016.0010},
  number={4},
  journal={Soft Robotics},
  publisher={Mary Ann Liebert Inc},
  author={Ross, Dylan and Nemitz, Markus P. and Stokes, Adam A.},
  year={2016},
  pages={170--176}
}

Download the bib file

References

  • Tucker VA., Am Sci (1975)
  • Roberts, T. J., Kram, R., Weyand, P. G. & Taylor, C. R. Energetics of Bipedal Running: I. Metabolic Cost of Generating Force. Journal of Experimental Biology vol. 201 2745–2751 (1998) – 10.1242/jeb.201.19.2745
  • Messner, P. W. C., Paik, J., Shepherd, R., Kim, S. & Trimmer, B. A. Energy for Biomimetic Robots: Challenges and Solutions. Soft Robotics vol. 1 106–109 (2014) – 10.1089/soro.2014.1501
  • Duriez, C. et al. EP4A: Software and Computer Based Simulator Research: Development and Outlook SOFA—An Open Source Framework for Medical Simulation. Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare vol. 2 284–285 (2007) – 10.1097/sih.0b013e31815f61bc
  • Hiller, J. & Lipson, H. Dynamic Simulation of Soft Multimaterial 3D-Printed Objects. Soft Robotics vol. 1 88–101 (2014) – 10.1089/soro.2013.0010
  • Lipson, H. Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots. Soft Robotics vol. 1 21–27 (2014) – 10.1089/soro.2013.0007
  • Lin, H.-T., Leisk, G. G. & Trimmer, B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration & Biomimetics vol. 6 026007 (2011) – 10.1088/1748-3182/6/2/026007
  • Stokes, A. A., Shepherd, R. F., Morin, S. A., Ilievski, F. & Whitesides, G. M. A Hybrid Combining Hard and Soft Robots. Soft Robotics vol. 1 70–74 (2014) – 10.1089/soro.2013.0002
  • Marchese, A. D., Onal, C. D. & Rus, D. Soft robot actuators using energy-efficient valves controlled by electropermanent magnets. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (2011) doi:10.1109/iros.2011.6095064 – 10.1109/iros.2011.6095064
  • Marchese, A. D., Onal, C. D. & Rus, D. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. Soft Robotics vol. 1 75–87 (2014) – 10.1089/soro.2013.0009
  • Mosadegh, B. et al. Pneumatic Networks for Soft Robotics that Actuate Rapidly. Advanced Functional Materials vol. 24 2163–2170 (2014) – 10.1002/adfm.201303288
  • Roche, E. T. et al. A Bioinspired Soft Actuated Material. Advanced Materials vol. 26 1200–1206 (2013) – 10.1002/adma.201304018
  • Shepherd, R. F. et al. Multigait soft robot. Proceedings of the National Academy of Sciences vol. 108 20400–20403 (2011) – 10.1073/pnas.1116564108
  • Tolley, M. T. et al. A Resilient, Untethered Soft Robot. Soft Robotics vol. 1 213–223 (2014) – 10.1089/soro.2014.0008
  • Loepfe, M., Schumacher, C. M., Lustenberger, U. B. & Stark, W. J. An Untethered, Jumping Roly-Poly Soft Robot Driven by Combustion. Soft Robotics vol. 2 33–41 (2015) – 10.1089/soro.2014.0021
  • Shepherd, R. F. et al. Using Explosions to Power a Soft Robot. Angewandte Chemie International Edition vol. 52 2892–2896 (2013) – 10.1002/anie.201209540
  • Bartlett, N. W. et al. A 3D-printed, functionally graded soft robot powered by combustion. Science vol. 349 161–165 (2015) – 10.1126/science.aab0129
  • Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Soft Robotics for Chemists. Angewandte Chemie International Edition vol. 50 1890–1895 (2011) – 10.1002/anie.201006464
  • Laschi, C. et al. Soft Robot Arm Inspired by the Octopus. Advanced Robotics vol. 26 709–727 (2012) – 10.1163/156855312x626343
  • Calisti, M. et al. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspiration & Biomimetics vol. 6 036002 (2011) – 10.1088/1748-3182/6/3/036002
  • Wei, T., Stokes, A. & Webb, B. A Soft Pneumatic Maggot Robot. Lecture Notes in Computer Science 375–386 (2016) doi:10.1007/978-3-319-42417-0_34 – 10.1007/978-3-319-42417-0_34
  • Boxerbaum, A. S., Shaw, K. M., Chiel, H. J. & Quinn, R. D. Continuous wave peristaltic motion in a robot. The International Journal of Robotics Research vol. 31 302–318 (2012) – 10.1177/0278364911432486
  • Wehner, M. et al. Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics. Soft Robotics vol. 1 263–274 (2014) – 10.1089/soro.2014.0018
  • Seok, S. et al. Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot. IEEE/ASME Transactions on Mechatronics vol. 20 1117–1129 (2015) – 10.1109/tmech.2014.2339013
  • Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-010.1007/978-3-642-03196-0
  • Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
  • Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011)10.1007/s00707-011-0510-2
  • Landau, L. D., Lifshitz, E. M., Sykes, J. B., Bell, J. S. & Alverson, R. C. Mechanics. Physics Today vol. 15 48–48 (1962) – 10.1063/1.3058020