Port-Hamiltonian Sliding Mode Observer Design for a Counter-current Heat Exchanger
Authors
Jacques Kadima Kazaku, Denis Dochain, Joseph Winkin, Moïse Mukepe Kahilu, Jimmy Kalenga Kaunde Kasongo
Abstract
This paper presents a sliding mode observer (SMO) for estimating temperatures in a heat exchanger. First a port-Hamiltonian formulation for a countercurrent heat exchanger is proposed. It is so as to guarantee convergence of the observer. It is shown that the Stokes-Dirac structure obtained by opening only the dissipation ports due to the convection phenomenon, is conservative. Secondly, a SMO based on an interconnected structure of port-Hamiltonian systems is designed. The convergence of the dynamics of the estimation error is proven. The simulation results illustrate the effectiveness of this estimation strategy.
Keywords
Heat exchanger; SMO; port-Hamiltonian systems; state estimation
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 4910–4915
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.1066
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Kazaku_2020,
title={{Port-Hamiltonian Sliding Mode Observer Design for a Counter-current Heat Exchanger}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.1066},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Kazaku, Jacques Kadima and Dochain, Denis and Winkin, Joseph and Kahilu, Moïse Mukepe and Kaunde Kasongo, Jimmy Kalenga},
year={2020},
pages={4910--4915}
}
References
- Aulisa, E., Burns, J. A. & Gilliam, D. S. Velocity Control of a Counter-Flow Heat Exchanger. IFAC-PapersOnLine vol. 49 104–109 (2016) – 10.1016/j.ifacol.2016.10.147
- Burns, J. A. & Cliff, E. M. Numerical methods for optimal control of heat exchangers. 2014 American Control Conference 1649–1654 (2014) doi:10.1109/acc.2014.6858959 – 10.1109/acc.2014.6858959
- Burns, J. A. & Kramer, B. Full flux models for optimization and control of heat exchangers. 2015 American Control Conference (ACC) 577–582 (2015) doi:10.1109/acc.2015.7170797 – 10.1109/acc.2015.7170797
- Chen, J.-H. Two-stream counter-flow heat exchanger equation with time-varying velocities. Journal of Mathematical Analysis and Applications vol. 410 492–498 (2014) – 10.1016/j.jmaa.2013.08.038
- Curtain, (1995)
- Duindam, (2009)
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Luo, (1999)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A., Gorrec, Y. L. & Ramirez, H. Asymptotic Stabilisation of Distributed Port-Hamiltonian Systems by Boundary Energy-Shaping Control. IFAC-PapersOnLine vol. 48 488–493 (2015) – 10.1016/j.ifacol.2015.05.143
- Maidi, A., Diaf, M. & Corriou, J.-P. Boundary geometric control of a counter-current heat exchanger. Journal of Process Control vol. 19 297–313 (2009) – 10.1016/j.jprocont.2008.03.002
- Malinowski, L. & Chen, J.-H. Analytical solutions of the equations for the transient temperature field in the three-fluid parallel-channel heat exchanger with three thermal communications. International Journal of Heat and Mass Transfer vol. 96 164–170 (2016) – 10.1016/j.ijheatmasstransfer.2016.01.001
- Meghnous, A. R., Pham, M. T. & Lin-Shi, X. Averaged port-Hamiltonian modeling based observer for DC-DC power converters. IFAC Proceedings Volumes vol. 46 827–832 (2013) – 10.3182/20130204-3-fr-2033.00199
- Utkin, Sliding mode control design principles and application to electric drivers. IEEE Transactions on Industry Application (1993)
- Zhou, W., Hamroun, B., Couenne, F. & Le Gorrec, Y. Distributed port-Hamiltonian modelling for irreversible processes. Mathematical and Computer Modelling of Dynamical Systems vol. 23 3–22 (2016) – 10.1080/13873954.2016.1237970
- Zitte, B., Hamroun, B., Couenne, F. & Pitault, I. Representation of heat exchanger networks using graph formalism. IFAC-PapersOnLine vol. 51 44–49 (2018) – 10.1016/j.ifacol.2018.06.012