Port-Hamiltonian Mathematical Model of a Fluid Ring Attitude System
Authors
Juan Cristobal Alcaraz Tapia, Carlos E. Castañeda, Héctor Vargas-Rodríguez
Abstract
In this article, we propose a mathematical model using the port-Hamiltonian formalism for a satellite’s three-axis attitude system comprising fluid rings. Fluid rings are an alternative to reaction wheels used for the same purpose, since, for the same mass, they can exert a greater torque than a reaction wheel as the fluid can circulate the periphery of the satellite. The port-Hamiltonian representation lays the foundation for a posterior controller that is feasible, stable, and robust based on the interconnection of the system to energy shaping and/or damping injection components, and by adding energy routing controllers. The torques exerted by the fluid rings are modeled using linear regression analysis on the experimental data got from a prototype of a fluid ring. Since the dynamics of turbulent flows is complex, the torques obtained by the prototype lead to a simpler first approach, leaving its uncertainties to a controller. Thus, the attitude system model could be tested in a future prototype before considering a spatial environment.
Citation
- Journal: Energies
- Year: 2021
- Volume: 14
- Issue: 21
- Pages: 6906
- Publisher: MDPI AG
- DOI: 10.3390/en14216906
BibTeX
@article{Alcaraz_Tapia_2021,
title={{Port-Hamiltonian Mathematical Model of a Fluid Ring Attitude System}},
volume={14},
ISSN={1996-1073},
DOI={10.3390/en14216906},
number={21},
journal={Energies},
publisher={MDPI AG},
author={Alcaraz Tapia, Juan Cristobal and Castañeda, Carlos E. and Vargas-Rodríguez, Héctor},
year={2021},
pages={6906}
}
References
- Froelich, R. & Papapoff, H. Reaction wheel attitude control for space vehicles. IRE Transactions on Automatic Control vol. 4 139–149 (1959) – 10.1109/tac.1959.1104897
- Dertouzos, M. L. & Roberge, J. K. High-Capacity Reaction-Wheel Attitude Control. IEEE Transactions on Applications and Industry vol. 83 99–104 (1964) – 10.1109/tai.1964.5407772
- Ismail, Z. & Varatharajoo, R. A study of reaction wheel configurations for a 3-axis satellite attitude control. Advances in Space Research vol. 45 750–759 (2010) – 10.1016/j.asr.2009.11.004
- Marsh, H. C., Karpenko, M. & Gong, Q. Relationships Between Maneuver Time and Energy for Reaction Wheel Attitude Control. Journal of Guidance, Control, and Dynamics vol. 41 335–348 (2018) – 10.2514/1.g002843
- King, J. T. Increasing agility in orthogonal reaction wheel attitude control systems. Acta Astronautica vol. 177 673–683 (2020) – 10.1016/j.actaastro.2020.08.027
- Singh, S. N. & Bossart, T. C. Exact feedback linearization and control of space station using CMG. IEEE Transactions on Automatic Control vol. 38 184–187 (1993) – 10.1109/9.186337
- Hoelscher, Optimal open-loop and feedback control using single gimbal control moment gyroscopes. J. Astronaut. Sci. (1994)
- MacKunis, W., Dupree, K., Fitz-Coy, N. & Dixon, W. E. Adaptive satellite attitude control in the presence of inertia and CMG gimbal friction uncertainties. The Journal of the Astronautical Sciences vol. 56 121–134 (2008) – 10.1007/bf03256544
- MacKunis, W., Leve, F., Patre, P. M., Fitz-Coy, N. & Dixon, W. E. Adaptive neural network-based satellite attitude control in the presence of CMG uncertainty. Aerospace Science and Technology vol. 54 218–228 (2016) – 10.1016/j.ast.2016.04.022
- Wiśniewski, R. & Blanke, M. Fully magnetic attitude control for spacecraft subject to gravity gradient. Automatica vol. 35 1201–1214 (1999) – 10.1016/s0005-1098(99)00021-7
- Santoni, F. & Zelli, M. Passive magnetic attitude stabilization of the UNISAT-4 microsatellite. Acta Astronautica vol. 65 792–803 (2009) – 10.1016/j.actaastro.2009.03.012
- Desouky, M. A. A. & Abdelkhalik, O. Improved Spacecraft Magnetic Attitude Maneuvering. Journal of Spacecraft and Rockets vol. 56 1611–1623 (2019) – 10.2514/1.a34452
- Varatharajoo, R., Kahle, R. & Fasoulas, S. Approach for Combining Spacecraft Attitude and Thermal Control Systems. Journal of Spacecraft and Rockets vol. 40 657–664 (2003) – 10.2514/2.6914
- Kumar, K. D. Satellite attitude stabilization using fluid rings. Acta Mechanica vol. 208 117–131 (2009) – 10.1007/s00707-008-0132-5
- Nobari, N. & Misra, A. Satellite Attitude Stabilization Using Four Fluid Rings in a Pyramidal Configuration. AIAA/AAS Astrodynamics Specialist Conference (2010) doi:10.2514/6.2010-7652 – 10.2514/6.2010-7652
- Nobari, N. A. & Misra, A. K. A hybrid attitude controller consisting of electromagnetic torque rods and an active fluid ring. Acta Astronautica vol. 94 470–479 (2014) – 10.1016/j.actaastro.2012.12.012
- Tayebi, J. & Soleymani, A. A comparative study of CMG and FMC actuators for Nano satellite attitude control system-pyramidal configuration. 2015 7th International Conference on Recent Advances in Space Technologies (RAST) 359–365 (2015) doi:10.1109/rast.2015.7208370 – 10.1109/rast.2015.7208370
- Akbaritabar, S., Esmaelzadeh, R. & Zardashti, R. Comparing fluid ring and CMG servomechanisms for active control of rigid satellites. Aircraft Engineering and Aerospace Technology vol. 90 896–905 (2018) – 10.1108/aeat-01-2017-0039
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Xi, Z., Cheng, D., Lu, Q. & Mei, S. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica vol. 38 527–534 (2002) – 10.1016/s0005-1098(01)00233-3
- Xi, Z. Adaptive stabilization of generalized Hamiltonian systems with dissipation and its applications to power systems. International Journal of Systems Science vol. 33 839–846 (2002) – 10.1080/00207720210167113
- Wassink, M., Carloni, R. & Stramigioli, S. Port-Hamiltonian analysis of a novel robotic finger concept for minimal actuation variable impedance grasping. 2010 IEEE International Conference on Robotics and Automation 771–776 (2010) doi:10.1109/robot.2010.5509871 – 10.1109/robot.2010.5509871
- Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dynamics vol. 72 49–59 (2012) – 10.1007/s11071-012-0689-3
- Chi, J., Yu, H. & Yu, J. Hybrid Tracking Control of 2-DOF SCARA Robot via Port-Controlled Hamiltonian and Backstepping. IEEE Access vol. 6 17354–17360 (2018) – 10.1109/access.2018.2820681
- Zhao, B., Yu, H., Yu, J., Liu, X. & Wu, H. Port-Controlled Hamiltonian and Sliding Mode Control of Gantry Robot Based on Induction Motor Drives. IEEE Access vol. 6 43840–43849 (2018) – 10.1109/access.2018.2862637
- Beattie, C. A., Mehrmann, V. & Van Dooren, P. Robust port-Hamiltonian representations of passive systems. Automatica vol. 100 182–186 (2019) – 10.1016/j.automatica.2018.11.013
- Battin, R. H. An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition. (1999) doi:10.2514/4.861543 – 10.2514/4.861543
- Junkins, J. L. & Schaub, H. Analytical Mechanics of Space Systems, Second Edition. (2009) doi:10.2514/4.867231 – 10.2514/4.867231
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Wang, C. et al. Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Applied Energy vol. 187 10–26 (2017) – 10.1016/j.apenergy.2016.11.046
- Shao, C. & Zhao, Y. Numerical study of the dimensionless characteristics and modeling experiment of a molten salt pump that transports viscous fluids. International Journal of Numerical Methods for Heat & Fluid Flow vol. 27 2131–2153 (2017) – 10.1108/hff-07-2016-0267
- LANDAU, L. D. & LIFSHITZ, E. M. THE EQUATIONS OF MOTION. Mechanics 1–12 (1976) doi:10.1016/b978-0-08-050347-9.50006-x – 10.1016/b978-0-08-050347-9.50006-x