Authors

Martin Wassink, Raffaella Carloni, Stefano Stramigioli

Abstract

This paper introduces a novel robotic finger concept for variable impedance grasping in unstructured tasks. A brief literature survey reveals the need for minimal component designs and the benefits of impedance control schemes for interaction tasks such as grasping. The novel robotic finger concept supports these insights by combining three key features: minimal actuation, variable mechanical compliance and full manipulability. This combination of features allows for a minimal component design, while reducing control complexity and still providing required dexterity and grasping capabilities. The conceptual properties (such as variable compliance) are studied in a port-Hamiltonian framework. The framework proved to be suitable in analyzing and understanding the finger properties, which will be used for future controller design.

Citation

  • Journal: 2010 IEEE International Conference on Robotics and Automation
  • Year: 2010
  • Volume:
  • Issue:
  • Pages: 771–776
  • Publisher: IEEE
  • DOI: 10.1109/robot.2010.5509871

BibTeX

@inproceedings{Wassink_2010,
  title={{Port-Hamiltonian analysis of a novel robotic finger concept for minimal actuation variable impedance grasping}},
  DOI={10.1109/robot.2010.5509871},
  booktitle={{2010 IEEE International Conference on Robotics and Automation}},
  publisher={IEEE},
  author={Wassink, Martin and Carloni, Raffaella and Stramigioli, Stefano},
  year={2010},
  pages={771--776}
}

Download the bib file

References

  • Montana, D. J. The condition for contact grasp stability. Proceedings. 1991 IEEE International Conference on Robotics and Automation 412–417 doi:10.1109/robot.1991.131612 – 10.1109/robot.1991.131612
  • Cutkosky, M. R. & Kao, I. Computing and controlling compliance of a robotic hand. IEEE Transactions on Robotics and Automation vol. 5 151–165 (1989) – 10.1109/70.88036
  • Kao, I., Cutkosky, M. R. & Johansson, R. S. Robotic stiffness control and calibration as applied to human grasping tasks. IEEE Transactions on Robotics and Automation vol. 13 557–566 (1997) – 10.1109/70.611319
  • Salisbury, J. Active stiffness control of a manipulator in cartesian coordinates. 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes (1980) doi:10.1109/cdc.1980.272026 – 10.1109/cdc.1980.272026
  • Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control vol. 107 1–7 (1985) – 10.1115/1.3140702
  • stramigioli, A passivity-based control scheme for robotic grasping and manipulation. Proc 38th Conf on Decision & Control (1999)
  • Wimbock, T., Ott, C. & Hirzinger, G. Analysis and experimental evaluation of the Intrinsically Passive Controller (IPC) for multifingered hands. 2008 IEEE International Conference on Robotics and Automation 278–284 (2008) doi:10.1109/robot.2008.4543221 – 10.1109/robot.2008.4543221
  • Laurin-Kovitz, K. F., Colgate, J. E. & Carnes, S. D. R. Design of components for programmable passive impedance. Proceedings. 1991 IEEE International Conference on Robotics and Automation 1476–1481 doi:10.1109/robot.1991.131824 – 10.1109/robot.1991.131824
  • Wimbock, T., Ott, C., Albu-Schaffer, A., Kugi, A. & Hirzinger, G. Impedance control for variable stiffness mechanisms with nonlinear joint coupling. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems 3796–3803 (2008) doi:10.1109/iros.2008.4651079 – 10.1109/iros.2008.4651079
  • Wolf, S. & Hirzinger, G. A new variable stiffness design: Matching requirements of the next robot generation. 2008 IEEE International Conference on Robotics and Automation (2008) doi:10.1109/robot.2008.4543452 – 10.1109/robot.2008.4543452
  • mouri, Anthropomorphic robot hand: Gifu hand iii. Proc Int Conf ICCAS (2002)
  • stramigioli, Modeling and IPC Control of Interactive Mechanical Systems, A Coordinate-Free Approach. (2001)
  • Jacobsen, S., Iversen, E., Knutti, D., Johnson, R. & Biggers, K. Design of the Utah/M.I.T. Dextrous Hand. Proceedings. 1986 IEEE International Conference on Robotics and Automation (1986) doi:10.1109/robot.1986.1087395 – 10.1109/robot.1986.1087395
  • Kargov, A. et al. Development of an Anthropomorphic Hand for a Mobile Assistive Robot. 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005. 182–186 doi:10.1109/icorr.2005.1501080 – 10.1109/icorr.2005.1501080
  • lotti, Ubh 3: A biologically inspired robotic hand. IEEE Int Conf on Intelligent Manipulation and Grasping (2004)
  • Yamano, I. & Maeno, T. Five-fingered Robot Hand using Ultrasonic Motors and Elastic Elements. Proceedings of the 2005 IEEE International Conference on Robotics and Automation 2673–2678 doi:10.1109/robot.2005.1570517 – 10.1109/robot.2005.1570517
  • butterfaß, Dlr-hand ii: Next generation of a dextrous robot hand. IEEE Int Conf Robot Autom (2001)
  • Salisbury, J. K. & Craig, J. J. Articulated Hands. The International Journal of Robotics Research vol. 1 4–17 (1982) – 10.1177/027836498200100102
  • duindam, Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach. (2009)
  • Bicchi, A. Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Transactions on Robotics and Automation vol. 16 652–662 (2000) – 10.1109/70.897777
  • Grebenstein, M. & van der Smagt, P. Antagonism for a Highly Anthropomorphic Hand–Arm System. Advanced Robotics vol. 22 39–55 (2008) – 10.1163/156855308x291836
  • Rothling, F., Haschke, R., Steil, J. J. & Ritter, H. Platform portable anthropomorphic grasping with the bielefeld 20-DOF shadow and 9-DOF TUM hand. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems 2951–2956 (2007) doi:10.1109/iros.2007.4398963 – 10.1109/iros.2007.4398963
  • Price, A. D., Jnifene, A. & Naguib, H. E. Design and control of a shape memory alloy based dexterous robot hand. Smart Materials and Structures vol. 16 1401–1414 (2007) – 10.1088/0964-1726/16/4/055
  • Hirose, S. & Umetani, Y. The development of soft gripper for the versatile robot hand. Mechanism and Machine Theory vol. 13 351–359 (1978) – 10.1016/0094-114x(78)90059-9
  • Koganezawa, K. & Ishizuka, Y. Novel mechanism of artificial finger using double planetary gear system. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems 3184–3191 (2008) doi:10.1109/iros.2008.4650589 – 10.1109/iros.2008.4650589
  • Pavlovic, N., Keimer, R. & Franke, H.-J. Adaptronic Revolute Joints for Parallel Robots Based on Simultaneous Quasi-Statical Axial and Radial Clearance Adjustment. Volume 2: 32nd Mechanisms and Robotics Conference, Parts A and B 797–804 (2008) doi:10.1115/detc2008-49263 – 10.1115/detc2008-49263
  • Massa, B., Roccella, S., Carrozza, M. C. & Dario, P. Design and development of an underactuated prosthetic hand. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292) vol. 4 3374–3379 – 10.1109/robot.2002.1014232