Port-Hamiltonian Control of a Differential Robot
Authors
Evert Josue Guajardo Benavides, Efrain Alcorta Garcia, Maria Aracelia Alcorta Garcia
Abstract
A novel approach to tracking control of a differential robot is proposed. Based on a Port-Hamiltonian representation of a differential robot, canonical transformations are used to obtain a controller that guarantees the tracking of a reference. The control law is inspired by a well-known controller taken from the literature and the Port-Hamiltonian version of the control law is derived. The performance of the algorithm as well as some of the robustness properties are tested using simulations under different scenarios.
Citation
- ISBN: 9783030900328
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-030-90033-5_3
- Note: Proceedings of the Latin American Congress on Automation and Robotics
BibTeX
@inbook{Benavides_2021,
title={{Port-Hamiltonian Control of a Differential Robot}},
ISBN={9783030900335},
ISSN={2367-3389},
DOI={10.1007/978-3-030-90033-5_3},
booktitle={{Advances in Automation and Robotics Research}},
publisher={Springer International Publishing},
author={Benavides, Evert Josue Guajardo and Garcia, Efrain Alcorta and Garcia, Maria Aracelia Alcorta},
year={2021},
pages={18--25}
}
References
- Dirksz, D. A. & Scherpen, J. M. A. On Tracking Control of Rigid-Joint Robots With Only Position Measurements. IEEE Trans. Contr. Syst. Technol. 21, 1510–1513 (2013) – 10.1109/tcst.2012.2204886
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Mulero-Martínez, J. I. Canonical transformations used to derive robot control laws from a port-controlled Hamiltonian system perspective. Automatica 44, 2435–2440 (2008) – 10.1016/j.automatica.2008.02.004
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Tracking Control of Fully-actuated port-Hamiltonian Mechanical Systems via Sliding Manifolds and Contraction Analysis. IFAC-PapersOnLine 50, 8256–8261 (2017) – 10.1016/j.ifacol.2017.08.1395
- Romero, J. G., Ortega, R. & Sarras, I. A Globally Exponentially Stable Tracking Controller for Mechanical Systems Using Position Feedback. IEEE Trans. Automat. Contr. 60, 818–823 (2015) – 10.1109/tac.2014.2330701
- Vos, E., Scherpen, J. M. A., Schaft, A. J. van der & Postma, A. Formation Control of Wheeled Robots in the Port-Hamiltonian Framework. IFAC Proceedings Volumes 47, 6662–6667 (2014) – 10.3182/20140824-6-za-1003.00394
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking of a class of port Hamiltonian systems using Timed IDA-PBC technique. 2015 54th IEEE Conference on Decision and Control (CDC) 5037–5042 (2015) doi:10.1109/cdc.2015.7403007 – 10.1109/cdc.2015.7403007