Canonical transformations used to derive robot control laws from a port-controlled Hamiltonian system perspective
Authors
Abstract
This paper addresses the problem of deriving control laws for robot manipulators in the framework of port-controlled Hamiltonian systems via canonical transformations and passivity-based control. The control design is focused on the presentation of a new energy-shaping methodology for tracking control based on the introduction of virtual non-homogeneous fields where a desired energy is defined to compensate for the actual energy of the robot manipulator while a virtual field forces the system to track a general reference trajectory. This requires use of the Legendre–Fenchel transformation and allows for the derivation standard control laws in the robotics field such as PD control with gravity compensation or PD with precompensation. Finally, the passivity of the input–output mapping of the non-autonomous Hamiltonian system is analyzed in detail, resulting in new Lyapunov candidate functions having their roots in physics.
Keywords
Tracking systems; Passive compensation; Mechanical manipulators; Nonlinear control
Citation
- Journal: Automatica
- Year: 2008
- Volume: 44
- Issue: 9
- Pages: 2435–2440
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2008.02.004
BibTeX
@article{Mulero_Mart_nez_2008,
title={{Canonical transformations used to derive robot control laws from a port-controlled Hamiltonian system perspective}},
volume={44},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2008.02.004},
number={9},
journal={Automatica},
publisher={Elsevier BV},
author={Mulero-Martínez, Juan Ignacio},
year={2008},
pages={2435--2440}
}
References
- Arnold, (1978)
- Craig, (1989)
- Flashner, Model tracking control of hamiltonian systems. Transactions of ASME (1989)
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Fujimoto, K. & Sugie, T. Canonical Transformation and Stabilization of Generalized Hamiltonian Systems. IFAC Proceedings Volumes 31, 523–528 (1998) – 10.1016/s1474-6670(17)40390-9
- Fujimoto, K. & Sugie, T. Time-varying Stabilization of Hamiltonian Systems Via Generalized Canonical Transformations. IFAC Proceedings Volumes 33, 63–68 (2000) – 10.1016/s1474-6670(17)35548-9
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Horn, (1999)
- Kelly, R. & Salgado, R. PD control with computed feedforward of robot manipulators: a design procedure. IEEE Trans. Robot. Automat. 10, 566–571 (1994) – 10.1109/70.313108
- Lozano, (2000)
- Matrosov, On the stability of motion. Journal of Applied Mathematics and Mechanics (1962)
- Nijmeijer, (1990)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Paden, B. & Riedle, B. A Positive-Real Modification of a Class of Nonlinear Controllers for Robot Manipulators. 1988 American Control Conference 1782–1785 (1988) doi:10.23919/acc.1988.4790015 – 10.23919/acc.1988.4790015
- Santibañez, V. & Kelly, R. PD control with feedforward compensation for robot manipulators: analysis andexperimentation. Robotica 19, 11–19 (2001) – 10.1017/s0263574700002848
- Skowronski, (1991)
- Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control 103, 119–125 (1981) – 10.1115/1.3139651
- Van der Schaft, (2000)
- Wen, J. T. A unified perspective on robot control: The energy lyapunov function approach. Adaptive Control & Signal 4, 487–500 (1990) – 10.1002/acs.4480040607
- Yoshikawa, (1990)