Port-Hamiltonian Based Control of Water Distribution Networks
Authors
Richard Perryman, Joshua A. Taylor, Bryan Karney
Abstract
No available
Citation
- Journal: SSRN Electronic Journal
- Year: 2022
- Volume:
- Issue:
- Pages:
- Publisher: Elsevier BV
- DOI: 10.2139/ssrn.4097576
BibTeX
@article{Perryman_2022,
title={{Port-Hamiltonian Based Control of Water Distribution Networks}},
ISSN={1556-5068},
DOI={10.2139/ssrn.4097576},
journal={SSRN Electronic Journal},
publisher={Elsevier BV},
author={Perryman, Richard and Taylor, Joshua A. and Karney, Bryan},
year={2022}
}
References
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Head at the fire node (6). (c) Flow through the pump link
- Figure 2: Comparisons of system behavior given different control approaches
- M H Chaudhry, Applied hydraulic transients (1979)
- J D Nault, Comprehensive simulation of one-dimensional unsteady pipe network hydraulics: Improved formulations and adaptive hybrid modeling (2017)
- W Gil-Gonz�lez, Passivity-based control of power systems considering hydroturbine with surge tank. IEEE Transactions on Power Systems (2019)
- Zeng, Y., Zhang, L., Guo, Y., Qian, J. & Zhang, C. The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets. Nonlinear Dyn 76, 1921–1933 (2014) – 10.1007/s11071-014-1257-9
- L Torres, Port-Hamiltonian models for flow of incompressible fluids in rigid pipelines with faults, in: 58th Conference on Decision and Control (2019)
- Cisneros, N., Rojas, A. J. & Ramirez, H. Port-Hamiltonian Modeling and Control of a Micro-Channel Experimental Plant. IEEE Access 8, 176935–176946 (2020) – 10.1109/access.2020.3026653
- Pasumarthy, R. & van der Schaft, A. A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach. Proceedings of the 45th IEEE Conference on Decision and Control 3984–3989 (2006) doi:10.1109/cdc.2006.377022 – 10.1109/cdc.2006.377022
- De Persis, C. & Kallesøe, C. S. Proportional and Proportional-Integral Controllers for a Nonlinear Hydraulic Network. IFAC Proceedings Volumes 41, 319–324 (2008) – 10.3182/20080706-5-kr-1001.00054
- De Persis, C. & Kallesoe, C. S. Pressure Regulation in Nonlinear Hydraulic Networks by Positive and Quantized Controls. IEEE Trans. Contr. Syst. Technol. 19, 1371–1383 (2011) – 10.1109/tcst.2010.2094619
- Jensen, T. N. & Wisniewski, R. Global practical stabilisation of large-scale hydraulic networks. IET Control Theory Appl. 5, 1335–1342 (2011) – 10.1049/iet-cta.2010.0360
- Jensen, T. N. & Wisniewski, R. Global Asymptotic Stabilization of Large-Scale Hydraulic Networks Using Positive Proportional Controls. IEEE Trans. Contr. Syst. Technol. 22, 2417–2423 (2014) – 10.1109/tcst.2014.2306990
- De Persis, C., Jensen, T. N., Ortega, R. & Wisniewski, R. Output Regulation of Large-Scale Hydraulic Networks. IEEE Trans. Contr. Syst. Technol. 22, 238–245 (2014) – 10.1109/tcst.2012.2233477
- Nørgaard Jensen, T., Wisniewski, R., DePersis, C. & Skovmose Kallesøe, C. Output regulation of large-scale hydraulic networks with minimal steady state power consumption. Control Engineering Practice 22, 103–113 (2014) – 10.1016/j.conengprac.2013.10.004
- T Scholten, Pressure regulation in large scale hydraulic networks with input constraints. 20th IFAC World Congress (2017)
- Nørgaard Jensen, T., Skovmose Kallesøe, C. & Wisniewski, R. Asymptotic set-point regulation for a large class of non-linear hydraulic networks. IFAC-PapersOnLine 50, 5355–5360 (2017) – 10.1016/j.ifacol.2017.08.937
- Machado, J. E., Cucuzzella, M., Pronk, N. & Scherpen, J. M. A. Adaptive Control for Flow and Volume Regulation in Multi-Producer District Heating Systems. IEEE Control Syst. Lett. 6, 794–799 (2022) – 10.1109/lcsys.2021.3085702
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Tahavori, M., Leth, J., Kallesøe, C. & Wisniewski, R. Optimal control of nonlinear hydraulic networks in the presence of disturbance. Nonlinear Dyn 75, 539–548 (2013) – 10.1007/s11071-013-1083-5
- H Phillips-Brenes, Energy-based model of a solar-powered pumped-hydro storage system. IEEE 39th Central America and Panama Convention (2019)
- D Fooladivanda, Energy-optimal pump scheduling and water flow. IEEE Transactions on Control of Network Systems PP (2017)
- Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters 56, 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
- Nault, J. D. & Karney, B. W. Improved Rigid Water Column Formulation for Simulating Slow Transients and Controlled Operations. J. Hydraul. Eng. 142, (2016) – 10.1061/(asce)hy.1943-7900.0001145
- L A Rossman, EPANET 2: users manual (2000)
- Simpson, A. R. & Marchi, A. Evaluating the Approximation of the Affinity Laws and Improving the Efficiency Estimate for Variable Speed Pumps. J. Hydraul. Eng. 139, 1314–1317 (2013) – 10.1061/(asce)hy.1943-7900.0000776
- Zhou, D. & Sachdeva, R. Simple model of electric submersible pump in gassy well. Journal of Petroleum Science and Engineering 70, 204–213 (2010) – 10.1016/j.petrol.2009.11.012
- A Van Der Schaft, Limits to energy conversion. IEEE Transactions on Automatic Control (2021)
- A Van Der Schaft, Classical thermodynamics revisited: A systems and control perspective (2020)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Hill, D. J. & Moylan, P. J. Dissipative Dynamical Systems: Basic Input-Output and State Properties. Journal of the Franklin Institute 309, 327–357 (1980) – 10.1016/0016-0032(80)90026-5
- J P La Salle, The stability of dynamical systems (1976)
- Zonetti, D., Ortega, R. & Benchaib, A. Modeling and control of HVDC transmission systems from theory to practice and back. Control Engineering Practice 45, 133–146 (2015) – 10.1016/j.conengprac.2015.09.012
- Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020) – 10.1038/s41586-020-2649-2
- Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17, 261–272 (2020) – 10.1038/s41592-019-0686-2
- Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007) – 10.1109/mcse.2007.55
- M K Camlibel, Incrementally port-Hamiltonian systems, in: 52nd IEEE Conference on Decision and Control (2013)