Port Controlled Hamiltonian Modeling and IDA-PBC Control of Dual Active Bridge Converters for DC Microgrids
Authors
Marco Cupelli, Sriram K. Gurumurthy, Siddharth K. Bhanderi, Zhiqing Yang, Philipp Joebges, Antonello Monti, Rik W. De Doncker
Abstract
Power electronics-based medium-voltage direct current (MVdc) microgrids consist of several interconnected feedback-controlled switching converters. Such systems experience bus voltage stability challenges owing to the negative incremental resistance of constant power loads and converter control loop interactions. To tackle the stability challenges, this paper presents the application of the interconnection and damping assignment passivity-based control (IDA-PBC) approach to the port-controlled Hamiltonian model of dual active bridge (DAB) source-side converters in an MVdc microgrid. For the DABs, a fundamental average model approach considering phase shift modulation is provided and used for deriving the corresponding IDA-PBC control law. We analyze the effectiveness of the controller on large signal scenarios considering disturbances such as load step up, and DAB disconnection. Hardware-in-the-Loop experiments using Opal-RT and Labview field programmable gate arrays (FPGAs), as well as, low power prototype tests are carried out to demonstrate the validity and feasibility of the proposed approach.
Citation
- Journal: IEEE Transactions on Industrial Electronics
- Year: 2019
- Volume: 66
- Issue: 11
- Pages: 9065–9075
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tie.2019.2901645
BibTeX
@article{Cupelli_2019,
title={{Port Controlled Hamiltonian Modeling and IDA-PBC Control of Dual Active Bridge Converters for DC Microgrids}},
volume={66},
ISSN={1557-9948},
DOI={10.1109/tie.2019.2901645},
number={11},
journal={IEEE Transactions on Industrial Electronics},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Cupelli, Marco and Gurumurthy, Sriram K. and Bhanderi, Siddharth K. and Yang, Zhiqing and Joebges, Philipp and Monti, Antonello and De Doncker, Rik W.},
year={2019},
pages={9065--9075}
}
References
- Doerry, N. Naval Power Systems: Integrated power systems for the continuity of the electrical power supply. IEEE Electrific. Mag. 3, 12–21 (2015) – 10.1109/mele.2015.2413434
- Cupelli, M., Gurumurthy, S. K. & Monti, A. Modelling and control of single phase DAB based MVDC shipboard power system. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society 6813–6819 (2017) doi:10.1109/iecon.2017.8217190 – 10.1109/iecon.2017.8217190
- Engel, S. P., Soltau, N., Stagge, H. & De Doncker, R. W. Dynamic and Balanced Control of Three-Phase High-Power Dual-Active Bridge DC–DC Converters in DC-Grid Applications. IEEE Trans. Power Electron. 28, 1880–1889 (2013) – 10.1109/tpel.2012.2209461
- Hengsi Qin & Kimball, J. W. Generalized Average Modeling of Dual Active Bridge DC–DC Converter. IEEE Trans. Power Electron. 27, 2078–2084 (2012) – 10.1109/tpel.2011.2165734
- segaran, Dynamic modelling and control of dual active bridge Bidirectional DC–DC converters for smart grid applications. Ph D Dissertation (2013)
- De Din, E., Siddique, H. A. B., Cupelli, M., Monti, A. & De Doncker, R. W. Voltage Control of Parallel-Connected Dual-Active Bridge Converters for Shipboard Applications. IEEE J. Emerg. Sel. Topics Power Electron. 6, 664–673 (2018) – 10.1109/jestpe.2017.2786350
- Kwasinski, A. & Krein, P. T. Stabilization of constant power loads in Dc-Dc converters using passivity-based control. INTELEC 07 - 29th International Telecommunications Energy Conference 867–874 (2007) doi:10.1109/intlec.2007.4448903 – 10.1109/intlec.2007.4448903
- Cupelli, M., Bhanderi, S. K., Gurumurthy, S. K. & Monti, A. Voltage control for buck converter based MVDC microgrids with interconnection and damping assignment passivity based control. 2018 19th IEEE Mediterranean Electrotechnical Conference (MELECON) 14–19 (2018) doi:10.1109/melcon.2018.8379060 – 10.1109/melcon.2018.8379060
- Meshram, R. V. et al. Port-Controlled Phasor Hamiltonian Modeling and IDA-PBC Control of Solid-State Transformer. IEEE Trans. Contr. Syst. Technol. 27, 161–174 (2019) – 10.1109/tcst.2017.2761866
- Bergna-Diaz, G., Zonetti, D., Sanchez, S., Tedeschi, E. & Ortega, R. PI passivity-based control of modular multilevel converters for multi-terminal HVDC systems. 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL) 1–8 (2017) doi:10.1109/compel.2017.8013329 – 10.1109/compel.2017.8013329
- Hossain, E., Perez, R., Nasiri, A. & Padmanaban, S. A Comprehensive Review on Constant Power Loads Compensation Techniques. IEEE Access 6, 33285–33305 (2018) – 10.1109/access.2018.2849065
- Cupelli, M. et al. Power Flow Control and Network Stability in an All-Electric Ship. Proc. IEEE 103, 2355–2380 (2015) – 10.1109/jproc.2015.2496789
- Zeng, J., Zhang, Z. & Qiao, W. An Interconnection and Damping Assignment Passivity-Based Controller for a DC–DC Boost Converter With a Constant Power Load. IEEE Trans. on Ind. Applicat. 50, 2314–2322 (2014) – 10.1109/tia.2013.2290872
- Javaid, U., Freijedo, F. D., Dujic, D. & van der Merwe, W. Dynamic Assessment of Source–Load Interactions in Marine MVDC Distribution. IEEE Trans. Ind. Electron. 64, 4372–4381 (2017) – 10.1109/tie.2017.2674597
- Freijedo, F. D., Rodriguez-Diaz, E. & Dujic, D. Stable and Passive High-Power Dual Active Bridge Converters Interfacing MVDC Grids. IEEE Trans. Ind. Electron. 65, 9561–9570 (2018) – 10.1109/tie.2018.2821108
- Paz, F. & Ordonez, M. High-Accuracy Impedance Detection to Improve Transient Stability in Microgrids. IEEE Trans. Ind. Electron. 64, 8167–8176 (2017) – 10.1109/tie.2017.2694405
- De Doncker, R. W. A. A., Divan, D. M. & Kheraluwala, M. H. A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Trans. on Ind. Applicat. 27, 63–73 (1991) – 10.1109/28.67533
- Dragicevic, T., Lu, X., Vasquez, J. & Guerrero, J. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Trans. Power Electron. 1–1 (2015) doi:10.1109/tpel.2015.2478859 – 10.1109/tpel.2015.2478859
- Vafamand, N., Khooban, M. H., Dragicevic, T. & Blaabjerg, F. Networked Fuzzy Predictive Control of Power Buffers for Dynamic Stabilization of DC Microgrids. IEEE Trans. Ind. Electron. 66, 1356–1362 (2019) – 10.1109/tie.2018.2826485
- Siddique, H. A. B. & De Doncker, R. W. Evaluation of DC Collector-Grid Configurations for Large Photovoltaic Parks. IEEE Trans. Power Delivery 33, 311–320 (2018) – 10.1109/tpwrd.2017.2702018
- Cupelli, M., Zhu, L. & Monti, A. Why Ideal Constant Power Loads Are Not the Worst Case Condition From a Control Standpoint. IEEE Trans. Smart Grid 6, 2596–2606 (2015) – 10.1109/tsg.2014.2361630
- Stieneker, M., Nurhan Rizqy Averous, Soltau, N., Stagge, H. & De Doncker, R. W. Analysis of wind turbines connected to medium-voltage DC grids. 2014 16th European Conference on Power Electronics and Applications 1–10 (2014) doi:10.1109/epe.2014.6911015 – 10.1109/epe.2014.6911015
- He, W. et al. Energy shaping control for buck–boost converters with unknown constant power load. Control Engineering Practice 74, 33–43 (2018) – 10.1016/j.conengprac.2018.02.006
- IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships. doi:10.1109/ieeestd.2010.5623440 – 10.1109/ieeestd.2010.5623440
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Riedel, J., Holmes, D. G., McGrath, B. P. & Teixeira, C. Maintaining Continuous ZVS Operation of a Dual Active Bridge by Reduced Coupling Transformers. IEEE Trans. Ind. Electron. 65, 9438–9448 (2018) – 10.1109/tie.2018.2815993
- (2017)
- Riccobono, A. et al. Stability of Shipboard DC Power Distribution: Online Impedance-Based Systems Methods. IEEE Electrific. Mag. 5, 55–67 (2017) – 10.1109/mele.2017.2718858
- Emadi, A., Khaligh, A., Rivetta, C. H. & Williamson, G. A. Constant Power Loads and Negative Impedance Instability in Automotive Systems: Definition, Modeling, Stability, and Control of Power Electronic Converters and Motor Drives. IEEE Trans. Veh. Technol. 55, 1112–1125 (2006) – 10.1109/tvt.2006.877483