PI passivity-based control of modular multilevel converters for multi-terminal HVDC systems
Authors
Gilbert Bergna-Diaz, Daniele Zonetti, Santiago Sanchez, Elisabetta Tedeschi, Romeo Ortega
Abstract
In this work, a decentralized PI passivity-based controller (PI-PBC) is applied to the Modular Multilevel Converters (MMCs) to ensure global asymptotic stability of a multiterminal MT-HVDC system. Since continuous MMC state-space models naturally have time-periodic steady-state solutions, a first step towards the derivation of the controller is the formulation of an equivalent model characterized by constant steady-state solutions, obtained via a multi-frequency orthogonal coordinates transformation. For the design of the controller, the overall system is represented in an appropriate port-Hamiltonian formulation, which allows the derivation of the stabilizing control law using passivity-based arguments. The results are validated on a three-terminal simulation benchmark.
Citation
- Journal: 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL)
- Year: 2017
- Volume:
- Issue:
- Pages: 1–8
- Publisher: IEEE
- DOI: 10.1109/compel.2017.8013329
BibTeX
@inproceedings{Bergna_Diaz_2017,
title={{PI passivity-based control of modular multilevel converters for multi-terminal HVDC systems}},
DOI={10.1109/compel.2017.8013329},
booktitle={{2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL)}},
publisher={IEEE},
author={Bergna-Diaz, Gilbert and Zonetti, Daniele and Sanchez, Santiago and Tedeschi, Elisabetta and Ortega, Romeo},
year={2017},
pages={1--8}
}
References
- Harnefors, L., Antonopoulos, A., Norrga, S., Angquist, L. & Nee, H.-P. Dynamic Analysis of Modular Multilevel Converters. IEEE Trans. Ind. Electron. 60, 2526–2537 (2013) – 10.1109/tie.2012.2194974
- Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F. & Escobar, G. Adaptive PI Stabilization of Switched Power Converters. IEEE Trans. Contr. Syst. Technol. 18, 688–698 (2010) – 10.1109/tcst.2009.2023669
- Bergna, G., Suul, J. A. & D’Arco, S. State-space modelling of modular multilevel converters for constant variables in steady-state. 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL) (2016) doi:10.1109/compel.2016.7556695 – 10.1109/compel.2016.7556695
- bergna-diaz, Generalized voltage-based state-space modelling of modular multilevel converters with constant equilibrium in steady-state (2017)
- Bergna-Diaz, G., Sanchez, S. & Tedeschi, E. Port-Hamiltonian modelling of Modular Multilevel Converters with fixed equilibrium point. 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER) 1–12 (2017) doi:10.1109/ever.2017.7935911 – 10.1109/ever.2017.7935911
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- Rohner, S., Weber, J. & Bernet, S. Continuous model of Modular Multilevel Converter with experimental verification. 2011 IEEE Energy Conversion Congress and Exposition 4021–4028 (2011) doi:10.1109/ecce.2011.6064316 – 10.1109/ecce.2011.6064316
- Christe, A. & Dujic, D. State-space modeling of modular multilevel converters including line frequency transformer. 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe) 1–10 (2015) doi:10.1109/epe.2015.7309055 – 10.1109/epe.2015.7309055
- Saad, H. et al. Modular Multilevel Converter Models for Electromagnetic Transients. IEEE Trans. Power Delivery 29, 1481–1489 (2014) – 10.1109/tpwrd.2013.2285633
- antonopoulos, on dynamics and voltage control of the modular multilevel converter. 2009 13th European Conference on Power Electronics and Applications epe (2009)
- Beerten, J., D’Arco, S. & Suul, J. A. Identification and Small-Signal Analysis of Interaction Modes in VSC MTDC Systems. IEEE Trans. Power Delivery 31, 888–897 (2016) – 10.1109/tpwrd.2015.2467965
- hertem, IEEE Press Series on Power Engineering (2016)
- Zonetti, D., Ortega, R. & Benchaib, A. Modeling and control of HVDC transmission systems from theory to practice and back. Control Engineering Practice 45, 133–146 (2015) – 10.1016/j.conengprac.2015.09.012
- khalil, Nonlinear Systems Prentice Hall New Jersey (1996)
- Lesnicar, A. & Marquardt, R. An innovative modular multilevel converter topology suitable for a wide power range. 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 3 272–277 – 10.1109/ptc.2003.1304403
- Zonetti, D., Ortega, R. & Benchaib, A. A globally asymptotically stable decentralized PI controller for multi-terminal high-voltage DC transmission systems. 2014 European Control Conference (ECC) 1397–1403 (2014) doi:10.1109/ecc.2014.6862419 – 10.1109/ecc.2014.6862419
- Chatzivasileiadis, S., Ernst, D. & Andersson, G. Global Power Grids for Harnessing World Renewable Energy. Renewable Energy Integration 175–188 (2014) doi:10.1016/b978-0-12-407910-6.00014-4 – 10.1016/b978-0-12-407910-6.00014-4
- Bestpaths eu project (0)
- antonopoulos, on dynamics and voltage control of the modular multilevel converter. 2009 13th European Conference on Power Electronics and Applications epe (2009)
- tu, Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters. Transmission and Distribution Conference and Exposition (T D) 2012 IEEE PES (2012)
- Teodorescu, R., Liserre, M. & Rodríguez, P. Grid Converters for Photovoltaic and Wind Power Systems. (2010) doi:10.1002/9780470667057 – 10.1002/9780470667057