Passive Nonlinear Impedance Control for Port-Hamiltonian Systems
Authors
Abstract
This paper describes a procedure to design a passive nonlinear impedance control for port-Hamiltonian systems. By expressing the system with the port-Hamiltonian system, the proposed method can be applied to the nonholonomic system as well as fully actuated mechanical systems. The feedback controller for nonlinear impedance control is acquired by utilizing the results of generalized canonical transformation for port-Hamiltonian system. In addition, we investigate the passivity of the closed loop system and discuss the characteristics of the controlled system. A numerical simulation of two-wheeled vehicle shows the effectiveness of the proposed control method.
Citation
- Journal: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
- Year: 2018
- Volume:
- Issue:
- Pages: 7983–7988
- Publisher: IEEE
- DOI: 10.1109/iros.2018.8594087
BibTeX
@inproceedings{Okura_2018,
title={{Passive Nonlinear Impedance Control for Port-Hamiltonian Systems}},
DOI={10.1109/iros.2018.8594087},
booktitle={{2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}},
publisher={IEEE},
author={Okura, Yuki and Fujimoto, Kenji},
year={2018},
pages={7983--7988}
}
References
- Inagaki, S., Suzuki, T. & Ito, T. Design of man-machine cooperative nonholonomic two-wheeled vehicle based on impedance control and time-state control. 2009 IEEE International Conference on Robotics and Automation 3768–3773 (2009) doi:10.1109/robot.2009.5152879 – 10.1109/robot.2009.5152879
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Okura, Y., Fujimoto, K., Saito, A. & Ikeda, H. On potential function design for path following control of port-Hamiltonian systems. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 2569–2574 (2017) doi:10.1109/cdc.2017.8264031 – 10.1109/cdc.2017.8264031
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory Tracking Control of Nonholonomic Hamiltonian Systems via Generalized Canonical Transformations. European Journal of Control 10, 421–431 (2004) – 10.3166/ejc.10.421-431
- Fujimoto, K. & Sugie, T. Stabilization of a class of Hamiltonian systems with nonholonomic constraints via canonical transformations. 1999 European Control Conference (ECC) 1076–1081 (1999) doi:10.23919/ecc.1999.7099451 – 10.23919/ecc.1999.7099451
- Cao, S. & Luo, Z. On energy-based robust passive control of a robot manipulator. Proceedings of the 2013 IEEE/SICE International Symposium on System Integration 635–640 (2013) doi:10.1109/sii.2013.6776723 – 10.1109/sii.2013.6776723
- Kishi, Y., Zhi Wei Luo, Asano, F. & Hosoe, S. Passive impedance control with time-varying impedance center. Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694) vol. 3 1207–1212 – 10.1109/cira.2003.1222169
- shimizu, Nonlinear impedance control to maintain robot position within specified ranges. 2012 Proceedings of SICE Annual Conference (SICE) (2012)
- Tsumugiwa, T., Yokogawa, R. & Hara, K. Variable impedance control with virtual stiffness for human-robot cooperative peg-in-hole task. IEEE/RSJ International Conference on Intelligent Robots and System vol. 2 1075–1081 – 10.1109/irds.2002.1043874
- Bianchi, F. et al. Adaptive internal impedance control for stable walking on uncertain visco-elastic terrains. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 2465–2470 (2012) doi:10.1109/iros.2012.6385905 – 10.1109/iros.2012.6385905
- Carelli, R. & Kelly, R. An adaptive impedance/force controller for robot manipulators. IEEE Trans. Automat. Contr. 36, 967–971 (1991) – 10.1109/9.133190
- Hogan, N. Impedance Control: An Approach to Manipulation. 1984 American Control Conference (1984) doi:10.23919/acc.1984.4788393 – 10.23919/acc.1984.4788393
- Salisbury, J. Active stiffness control of a manipulator in cartesian coordinates. 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes (1980) doi:10.1109/cdc.1980.272026 – 10.1109/cdc.1980.272026
- Sakai, S. & Stramigioli, S. Casimir based impedance control. 2012 IEEE International Conference on Robotics and Automation 1384–1391 (2012) doi:10.1109/icra.2012.6224563 – 10.1109/icra.2012.6224563