Optimized Cooperative Control of Error Port-Controlled Hamiltonian and Adaptive Backstepping Sliding Mode for a Multi-Joint Industrial Robot
Authors
Abstract
Robot joints driven by permanent magnet synchronous motors (PMSM) often cannot have both superior accuracy and rapidity when they track target signals. The robot joints have fine dynamic characteristics and poor steady-state characteristics when the signal controller is used, or they have fine steady-state characteristics and poor dynamic characteristics when the energy controller is used. It is hard to make robot joints that have both superior dynamic and steady-state characteristics at once using a single control method. In order to solve this problem, the strategy of optimized cooperative control is proposed. First, an error port-controlled Hamiltonian (EPCH) energy controller and an adaptive backstepping sliding mode (ABSM) signal controller are designed. Second, an optimized cooperative control coefficient based on the position error of a robot joint is designed; this enables the system to switch smoothly between the EPCH energy controller and ABSM signal controller. Next, the strategy of optimized cooperative control is designed. In this way, robot systems can combine the advantages of the EPCH energy controller and the ABSM signal controller. Finally, simulation results demonstrate that using the strategy of optimized cooperative control gives robot joints outstanding control performance in terms of tracking accuracy and response rapidity.
Citation
- Journal: Mathematics
- Year: 2023
- Volume: 11
- Issue: 6
- Pages: 1542
- Publisher: MDPI AG
- DOI: 10.3390/math11061542
BibTeX
@article{Yang_2023,
title={{Optimized Cooperative Control of Error Port-Controlled Hamiltonian and Adaptive Backstepping Sliding Mode for a Multi-Joint Industrial Robot}},
volume={11},
ISSN={2227-7390},
DOI={10.3390/math11061542},
number={6},
journal={Mathematics},
publisher={MDPI AG},
author={Yang, Xiaoyu and Yu, Haisheng},
year={2023},
pages={1542}
}
References
- Lin, Y., Zhao, H. & Ding, H. External Force Estimation for Industrial Robots With Flexible Joints. IEEE Robot. Autom. Lett. 5, 1311–1318 (2020) – 10.1109/lra.2020.2968058
- Rubio, J. D. J. et al. Modified Linear Technique for the Controllability and Observability of Robotic Arms. IEEE Access 10, 3366–3377 (2022) – 10.1109/access.2021.3140160
- Soriano, L. A. et al. Optimization of Sliding Mode Control to Save Energy in a SCARA Robot. Mathematics 9, 3160 (2021) – 10.3390/math9243160
- Liu, X. et al. Climbing Strategy of Variable Topology Cellular Space Robots Considering Configuration Optimization. Mathematics 11, 1410 (2023) – 10.3390/math11061410
- Hong, D.-K., Hwang, W., Lee, J.-Y. & Woo, B.-C. Design, Analysis, and Experimental Validation of a Permanent Magnet Synchronous Motor for Articulated Robot Applications. IEEE Trans. Magn. 54, 1–4 (2018) – 10.1109/tmag.2017.2752080
- Schluter, M. & Perondi, E. Mathematical Modeling with Friction of a SCARA Robot Driven by Pneumatic Semi-rotary Actuators. IEEE Latin Am. Trans. 18, 1066–1076 (2020) – 10.1109/tla.2020.9099684
- Zhang, W., Li, M., Gao, Y. & Chen, Y. Periodic adaptive learning control of PMSM servo system with LuGre model-based friction compensation. Mechanism and Machine Theory 167, 104561 (2022) – 10.1016/j.mechmachtheory.2021.104561
- Yue, F. & Li, X. Robust adaptive integral backstepping control for opto-electronic tracking system based on modified LuGre friction model. ISA Transactions 80, 312–321 (2018) – 10.1016/j.isatra.2018.07.016
- Dirksz, D. A. & Scherpen, J. M. A. On Tracking Control of Rigid-Joint Robots With Only Position Measurements. IEEE Trans. Contr. Syst. Technol. 21, 1510–1513 (2013) – 10.1109/tcst.2012.2204886
- Lu, W. et al. Load Adaptive PMSM Drive System Based on an Improved ADRC for Manipulator Joint. IEEE Access 9, 33369–33384 (2021) – 10.1109/access.2021.3060925
- Rong-Jong Wai & Muthusamy, R. Fuzzy-Neural-Network Inherited Sliding-Mode Control for Robot Manipulator Including Actuator Dynamics. IEEE Trans. Neural Netw. Learning Syst. 24, 274–287 (2013) – 10.1109/tnnls.2012.2228230
- Sariyildiz, E., Sekiguchi, H., Nozaki, T., Ugurlu, B. & Ohnishi, K. A Stability Analysis for the Acceleration-Based Robust Position Control of Robot Manipulators via Disturbance Observer. IEEE/ASME Trans. Mechatron. 23, 2369–2378 (2018) – 10.1109/tmech.2018.2854844
- Petrovic, V., Ortega, R. & Stankovi, A. M. Interconnection and damping assignment approach to control of PM synchronous motors. IEEE Trans. Contr. Syst. Technol. 9, 811–820 (2001) – 10.1109/87.960344
- Donaire, A., Romero, J. G. & Ortega, R. Correction to the Paper “A Robust IDA-PBC Approach for Handling Uncertainties in Underactuated Mechanical Systems” [Oct 18 3495-3502]. IEEE Trans. Automat. Contr. 65, 3223–3226 (2020) – 10.1109/tac.2019.2949876
- Zheng, X. & Yang, X. Command Filter and Universal Approximator Based Backstepping Control Design for Strict-Feedback Nonlinear Systems With Uncertainty. IEEE Trans. Automat. Contr. 65, 1310–1317 (2020) – 10.1109/tac.2019.2929067
- Qiao, N., Wang, L., Liu, M. & Wang, Z. The sliding mode controller with improved reaching law for harvesting robots. J Intell Robot Syst 104, (2021) – 10.1007/s10846-021-01536-6
- Ling, S., Wang, H. & Liu, P. X. Adaptive Fuzzy Tracking Control of Flexible-Joint Robots Based on Command Filtering. IEEE Trans. Ind. Electron. 67, 4046–4055 (2020) – 10.1109/tie.2019.2920599
- Jin, M., Kang, S. H., Chang, P. H. & Lee, J. Robust Control of Robot Manipulators Using Inclusive and Enhanced Time Delay Control. IEEE/ASME Trans. Mechatron. 22, 2141–2152 (2017) – 10.1109/tmech.2017.2718108
- Lima Costa, T., Lara-Molina, F. A., Cavalini Junior, A. A. & Taketa, E. Robust H∞ Computed torque Control for Manipulators. IEEE Latin Am. Trans. 16, 398–407 (2018) – 10.1109/tla.2018.8327392
- Pezzato, C., Ferrari, R. & Corbato, C. H. A Novel Adaptive Controller for Robot Manipulators Based on Active Inference. IEEE Robot. Autom. Lett. 5, 2973–2980 (2020) – 10.1109/lra.2020.2974451
- Pan, Y., Wang, H., Li, X. & Yu, H. Adaptive Command-Filtered Backstepping Control of Robot Arms With Compliant Actuators. IEEE Trans. Contr. Syst. Technol. 26, 1149–1156 (2018) – 10.1109/tcst.2017.2695600
- Cheng, X., Zhang, Y., Liu, H., Wollherr, D. & Buss, M. Adaptive neural backstepping control for flexible-joint robot manipulator with bounded torque inputs. Neurocomputing 458, 70–86 (2021) – 10.1016/j.neucom.2021.06.013
- Lee, J., Chang, P. H. & Jin, M. Adaptive Integral Sliding Mode Control With Time-Delay Estimation for Robot Manipulators. IEEE Trans. Ind. Electron. 64, 6796–6804 (2017) – 10.1109/tie.2017.2698416
- Ren, C., Li, X., Yang, X. & Ma, S. Extended State Observer-Based Sliding Mode Control of an Omnidirectional Mobile Robot With Friction Compensation. IEEE Trans. Ind. Electron. 66, 9480–9489 (2019) – 10.1109/tie.2019.2892678
- Van, M., Mavrovouniotis, M. & Ge, S. S. An Adaptive Backstepping Nonsingular Fast Terminal Sliding Mode Control for Robust Fault Tolerant Control of Robot Manipulators. IEEE Trans. Syst. Man Cybern, Syst. 49, 1448–1458 (2019) – 10.1109/tsmc.2017.2782246
- Yang, C. et al. Finite-Time Convergence Adaptive Fuzzy Control for Dual-Arm Robot With Unknown Kinematics and Dynamics. IEEE Trans. Fuzzy Syst. 27, 574–588 (2019) – 10.1109/tfuzz.2018.2864940
- Makarov, M., Grossard, M., Rodriguez-Ayerbe, P. & Dumur, D. Modeling and Preview <inline-formula> <tex-math notation=”LaTeX”>$H_\infty$</tex-math> </inline-formula> Control Design for Motion Control of Elastic-Joint Robots With Uncertainties. IEEE Trans. Ind. Electron. 63, 6429–6438 (2016) – 10.1109/tie.2016.2583406
- Liu, X. & Liao, X. Fixed-Time $\mathcal {H}_{\infty }$ Control for Port-Controlled Hamiltonian Systems. IEEE Trans. Automat. Contr. 64, 2753–2765 (2019) – 10.1109/tac.2018.2874768
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 63, 1032–1044 (2018) – 10.1109/tac.2017.2732283
- Zhai, J. & Li, Z. Fast-Exponential Sliding Mode Control of Robotic Manipulator With Super-Twisting Method. IEEE Trans. Circuits Syst. II 69, 489–493 (2022) – 10.1109/tcsii.2021.3081147
- Freidovich, L., Robertsson, A., Shiriaev, A. & Johansson, R. LuGre-Model-Based Friction Compensation. IEEE Trans. Contr. Syst. Technol. 18, 194–200 (2010) – 10.1109/tcst.2008.2010501
- Azizi, Y. & Yazdizadeh, A. Passivity‐based adaptive control of a 2‐DOF serial robot manipulator with temperature dependent joint frictions. Adaptive Control & Signal 33, 512–526 (2019) – 10.1002/acs.2968
- Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dyn 72, 49–59 (2012) – 10.1007/s11071-012-0689-3
- Meng, X., Yu, H., Zhang, J. & Yang, Q. Adaptive EPCH strategy for nonlinear systems with parameters uncertainty and disturbances. Nonlinear Dyn 111, 7511–7524 (2023) – 10.1007/s11071-023-08243-x
- Meng, X., Yu, H., Zhang, J. & Yan, K. Optimized control strategy based on EPCH and DBMP algorithms for quadruple-tank liquid level system. Journal of Process Control 110, 121–132 (2022) – 10.1016/j.jprocont.2021.12.008
- Meng, X., Yu, H. & Zhang, J. An EPCH Control Strategy for Complex Nonlinear Systems with Actuator Saturation and Disturbances. Information Sciences 625, 639–655 (2023) – 10.1016/j.ins.2023.01.005