On trajectory tracking control of port-Hamiltonian systems with quaternions
Authors
Kenji Fujimoto, Taishi Nishiyama
Abstract
A quaternion representation is often used to describe the attitude of a rigid body type spacecraft since it does not have any singular point whereas the conventional Euler angle description intrinsically has one. However, the dynamical equation with quaternions become more complicated than those described by Euler angles. In order to control the system with quaternions easily, we apply the authors’ previous work on trajectory tracking control for port-Hamiltonian systems and extend it to handle quaternions. In the proposed design procedure, we do not need to solve any additional partial differential equations (PDEs) whereas nonlinear control very often requires to solve them.
Citation
- Journal: 53rd IEEE Conference on Decision and Control
- Year: 2014
- Volume:
- Issue:
- Pages: 4820–4825
- Publisher: IEEE
- DOI: 10.1109/cdc.2014.7040141
BibTeX
@inproceedings{Fujimoto_2014,
title={{On trajectory tracking control of port-Hamiltonian systems with quaternions}},
DOI={10.1109/cdc.2014.7040141},
booktitle={{53rd IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Fujimoto, Kenji and Nishiyama, Taishi},
year={2014},
pages={4820--4825}
}
References
- Dirksz, D. A. & Scherp, J. M. A. Adaptive tracking control of fully actuated port-Hamiltonian mechanical systems. 2010 IEEE International Conference on Control Applications 1678–1683 (2010) doi:10.1109/cca.2010.5611301 – 10.1109/cca.2010.5611301
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory Tracking Control of Nonholonomic Hamiltonian Systems via Generalized Canonical Transformations. European Journal of Control 10, 421–431 (2004) – 10.3166/ejc.10.421-431
- Wie, B. Space Vehicle Dynamics and Control, Second Edition. (2008) doi:10.2514/4.860119 – 10.2514/4.860119
- hughes, Spacecraft Attitude Dynamics (1986)
- Wie, B. & Barba, P. M. Quaternion feedback for spacecraft large angle maneuvers. Journal of Guidance, Control, and Dynamics 8, 360–365 (1985) – 10.2514/3.19988
- Berghuis, H. & Nijmeijer, H. A passivity approach to controller-observer design for robots. IEEE Trans. Robot. Automat. 9, 740–754 (1993) – 10.1109/70.265918
- satoh, Observer based stochastic trajectory tracking control of mechanical systems. Proc of the ICROS-SICE International Conference (2009)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- arimoto, Control theory of non-linear mechanical systems Passivity-based and circuit-theoretic approach (1996)
- Duindam, V. & Stramigioli, S. Port-Based Asymptotic Curve Tracking for Mechanical Systems. European Journal of Control 10, 411–420 (2004) – 10.3166/ejc.10.411-420
- Zenkov, D. V., Bloch, A. M. & Marsden, J. E. Controlled lagrangian methods and tracking of accelerated motions. 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475) vol. 1 533–538 – 10.1109/cdc.2003.1272618
- Multidomain modeling of nonlinear networks and systems. IEEE Control Syst. 29, 28–59 (2009) – 10.1109/mcs.2009.932927
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Taniguchi, M. & Fujimoto, K. Time-varying path following control for port-Hamiltonian systems. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 3323–3328 (2009) doi:10.1109/cdc.2009.5400011 – 10.1109/cdc.2009.5400011