On the Generating Functions of Irreversible port-Hamiltonian Systems⋆
Authors
Jonas Kirchhoff, Bernhard Maschke
Abstract
We study the geometric structure of the drift dynamics of Irreversible port-Hamiltonian systems. This drift dynamics is defined with respect to a product of Poisson brackets, reflecting the interconnection structure and the constitutive relations of the irreversible phenomena occuring in the system. We characterise this product of Poisson brackets using a covariant 4-tensor and an associated function. We derive various conditions for which this 4-tensor and the associated function may be reduced to a product of almost Poisson brackets.
Keywords
port-Hamiltonian Systems; Nonlinear Systems; Irreversible Thermodynamics; Energy and Entropy based Modelling; Geometrical Methods
Citation
- Journal: IFAC-PapersOnLine
- Year: 2023
- Volume: 56
- Issue: 2
- Pages: 10447–10452
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2023.10.1061
- Note: 22nd IFAC World Congress- Yokohama, Japan, July 9-14, 2023
BibTeX
@article{Kirchhoff_2023,
title={{On the Generating Functions of Irreversible port-Hamiltonian Systems⋆}},
volume={56},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2023.10.1061},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Kirchhoff, Jonas and Maschke, Bernhard},
year={2023},
pages={10447--10452}
}
References
- Edwards, B. J. & Beris, A. N. Non-canonical Poisson bracket for nonlinear elasticity with extensions to viscoelasticity. Journal of Physics A: Mathematical and General vol. 24 2461–2480 (1991) – 10.1088/0305-4470/24/11/014
- Beris, (1994)
- Cantrijn, F., León, M. de & Diego, D. M. de. On almost-Poisson structures in nonholonomic mechanics. Nonlinearity vol. 12 721–737 (1999) – 10.1088/0951-7715/12/3/316
- Cohn, (1971)
- de León, M. et al. Lineaalmost Poisson structures and Hamilton-Jacobi equation. Applicationto nonholonomic mechanics. Journal of Geometric Mechanics vol. 2 159–198 (2010) – 10.3934/jgm.2010.2.159
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Kaufman, A. N. Dissipative hamiltonian systems: A unifying principle. Physics Letters A vol. 100 419–422 (1984) – 10.1016/0375-9601(84)90634-0
- Marle, C.-M. Various approaches to conservative and nonconservative nonholonomic systems. Reports on Mathematical Physics vol. 42 211–229 (1998) – 10.1016/s0034-4877(98)80011-6
- Maschke, Port maps of Irreversible Port Hamiltonian Systems. (2022)
- Morrison, P. J. A paradigm for joined Hamiltonian and dissipative systems. Physica D: Nonlinear Phenomena vol. 18 410–419 (1986) – 10.1016/0167-2789(86)90209-5
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002