On path following control of nonholonomic port-Hamiltonian systems via generalized canonical transformations
Authors
Ryotaro Shima, Yuki Okura, Kenji Fujimoto, Ichiro Maruta
Abstract
This paper proposes a constructive design method of a static state feedback law which makes a nonholonomic port-Hamiltonian system follow a desired path. A generalized canonical transformation connects two port-Hamiltonian systems through a pair of a feedback and a coordinate change. This paper clarifies how a generalized canonical transformation connects the plant nonholonomic port-Hamiltonian system with an error system. Stabilizing the path following error system allows one to derive a constructive path following control law for the nonholonomic port-Hamiltonian system. Finally, an example shows a concrete design procedure of the proposed method.
Keywords
Nonlinear control; path following; nonholonomic systems; mechanical systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2019
- Volume: 52
- Issue: 16
- Pages: 298–303
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2019.11.795
- Note: 11th IFAC Symposium on Nonlinear Control Systems NOLCOS 2019- Vienna, Austria, 4–6 September 2019
BibTeX
@article{Shima_2019,
title={{On path following control of nonholonomic port-Hamiltonian systems via generalized canonical transformations}},
volume={52},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2019.11.795},
number={16},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Shima, Ryotaro and Okura, Yuki and Fujimoto, Kenji and Maruta, Ichiro},
year={2019},
pages={298--303}
}
References
- Duindam, V., Stramigioli, S. & Scherpen, J. M. A. Passive Compensation of Nonlinear Robot Dynamics. IEEE Transactions on Robotics and Automation vol. 20 480–487 (2004) – 10.1109/tra.2004.824693
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory Tracking Control of Nonholonomic Hamiltonian Systems via Generalized Canonical Transformations. European Journal of Control vol. 10 421–431 (2004) – 10.3166/ejc.10.421-431
- Fujimoto, (1999)
- Fujimoto, K. & Taniguchi, M. Passive path following control for port-Hamiltonian systems. 2008 47th IEEE Conference on Decision and Control 1285–1290 (2008) doi:10.1109/cdc.2008.4739242 – 10.1109/cdc.2008.4739242
- Zhong-Ping Jiang & Nijmeijer, H. A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Transactions on Automatic Control vol. 44 265–279 (1999) – 10.1109/9.746253
- Kapitanyuk, Y. A., Proskurnikov, A. V. & Cao, M. A Guiding Vector-Field Algorithm for Path-Following Control of Nonholonomic Mobile Robots. IEEE Transactions on Control Systems Technology vol. 26 1372–1385 (2018) – 10.1109/tcst.2017.2705059
- Mazur, (2007)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Plaskonka, (2012)
- Sordalen, O. J. & Egeland, O. Exponential stabilization of nonholonomic chained systems. IEEE Transactions on Automatic Control vol. 40 35–49 (1995) – 10.1109/9.362901
- van der Schaft, (2017)
- Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1032–1044 (2018) – 10.1109/tac.2017.2732283