Moment matching for nonlinear port Hamiltonian and gradient systems
Authors
Tudor C. Ionescu, Alessandro Astolfi
Abstract
The problem of moment matching with preservation of port Hamiltonian and gradient structure is studied. Based on the time-domain approach to linear moment matching, we characterize the (subset of) port Hamiltonian/gradient models from the set of parameterized models that match the moments of a given port Hamiltonian/gradient system, at a set of finite points.
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2013
- Volume: 46
- Issue: 23
- Pages: 395–399
- Publisher: Elsevier BV
- DOI: 10.3182/20130904-3-fr-2041.00160
- Note: 9th IFAC Symposium on Nonlinear Control Systems
BibTeX
@article{Ionescu_2013,
title={{Moment matching for nonlinear port Hamiltonian and gradient systems}},
volume={46},
ISSN={1474-6670},
DOI={10.3182/20130904-3-fr-2041.00160},
number={23},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Ionescu, Tudor C. and Astolfi, Alessandro},
year={2013},
pages={395--399}
}
References
- Antoulas, (2005)
- Astolfi, A. Model Reduction by Moment Matching for Linear and Nonlinear Systems. IEEE Trans. Automat. Contr. 55, 2321–2336 (2010) – 10.1109/tac.2010.2046044
- Cortés, J., van der Schaft, A. & Crouch, P. E. Characterization of Gradient Control Systems. SIAM J. Control Optim. 44, 1192–1214 (2005) – 10.1137/s0363012903425568
- Crouch, Geometric structure in systems theory. IEE Proceedings (1981)
- Feldmann, P. & Freund, R. W. Efficient linear circuit analysis by Pade approximation via the Lanczos process. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 14, 639–649 (1995) – 10.1109/43.384428
- Ionescu, T. C., Fujimoto, K. & Scherpen, J. M. A. Dissipativity preserving balancing for nonlinear systems — A Hankel operator approach. Systems & Control Letters 59, 180–194 (2010) – 10.1016/j.sysconle.2010.01.003
- Ionescu, T. C., Fujimoto, K. & Scherpen, J. M. A. Singular Value Analysis Of Nonlinear Symmetric Systems. IEEE Trans. Automat. Contr. 56, 2073–2086 (2011) – 10.1109/tac.2011.2126630
- Jaimoukha, I. M. & Kasenally, E. M. Implicitly Restarted Krylov Subspace Methods for Stable Partial Realizations. SIAM J. Matrix Anal. & Appl. 18, 633–652 (1997) – 10.1137/s0895479895279873
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46, 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Scherpen, J. M. A. & van der Schaft, A. J. Balanced model reduction of gradient systems. IFAC Proceedings Volumes 44, 12745–12750 (2011) – 10.3182/20110828-6-it-1002.03550
- van der Schaft, (2000)
- van Dooren, (1995)
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control 16, 401–406 (2010) – 10.3166/ejc.16.401-406