Modelling the 1D piston problem as interconnected port-Hamiltonian systems
Authors
Anne-Sophie Treton, Ghislain Haine, Denis Matignon
Abstract
In this study, the modelling of the boundary-controlled 1D piston problem as the interconnection of simpler port-Hamiltonian systems (pHs) is addressed. More precisely, two viscous compressible fluids are separated by a moving rigid body on a bounded domain (0, L). Thermodynamics is taken into account, leading to two pHs for each physical domain: one associated to the kinetic energy and the other one to the internal energy. No chemical reaction is being considered in the system. A control by mass injection/rejection and heating is then applied at the left end of the first fluid.
Keywords
Piston problem; port-Hamiltonian system; Dirac structure; free boundary; non-linear PDE; fluid-structure-thermal interactions; control; observation
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 11503–11508
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.601
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Treton_2020,
title={{Modelling the 1D piston problem as interconnected port-Hamiltonian systems}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.601},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Treton, Anne-Sophie and Haine, Ghislain and Matignon, Denis},
year={2020},
pages={11503--11508}
}
References
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Boyer, (2013)
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Diagne, M. & Maschke, B. Port Hamiltonian formulation of a system of two conservation laws with a moving interface. European Journal of Control vol. 19 495–504 (2013) – 10.1016/j.ejcon.2013.09.001
- Ding, M. & Li, Y. An Overview of Piston Problems in Fluid Dynamics. Springer Proceedings in Mathematics & Statistics 161–191 (2013) doi:10.1007/978-3-642-39007-4_8 – 10.1007/978-3-642-39007-4_8
- Duindam, (2009)
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Le Gorrec, (2004)
- Lequeurre, J. & Tucsnak, M. The piston problem in a port-Hamiltonian formalism. IFAC-PapersOnLine vol. 48 212–216 (2015) – 10.1016/j.ifacol.2015.10.241
- Maity, D., Takahashi, T. & Tucsnak, M. Analysis of a system modelling the motion of a piston in a viscous gas. Journal of Mathematical Fluid Mechanics vol. 19 551–579 (2016) – 10.1007/s00021-016-0293-2
- Malinen, J., Staffans, O. & Weiss, G. When is a linear system conservative? Quarterly of Applied Mathematics vol. 64 61–91 (2006) – 10.1090/s0033-569x-06-00994-7
- Ndanou, S., Favrie, N. & Gavrilyuk, S. The piston problem in hyperelasticity with the stored energy in separable form. Mathematics and Mechanics of Solids vol. 22 101–113 (2016) – 10.1177/1081286514566707
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system. IFAC-PapersOnLine vol. 52 51–56 (2019) – 10.1016/j.ifacol.2019.07.009
- Serhani, A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. (2019)
- Tucsnak, Observation and control for operator semigroups. (2009)
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925
- van der Schaft, Port-Hamiltonian Systems Theory: an Introductory Overview. Now Foundations and Trends (2014)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874