Modelling and Structure-Preserving Discretization of the Schrödinger as a Port-Hamiltonian System, and Simulation of a Controlled Quantum Box
Authors
Gabriel Verrier, Ghislain Haine, Denis Matignon
Abstract
The modelling of the Schrödinger Equation as a port-Hamil-tonian system is addressed. We suggest two Hamiltonians for the model, one based on the probability of presence and the other on the energy of the quantum system in a time-independent potential. In order to simulate the evolution of the quantum system, we adapt the model to a bounded domain. The model is discretized thanks to the structure-preserving Partitioned Finite Element Method (PFEM). Simulations of Rabi oscillations to control the state of a system inside a quantum box are performed. Our numerical experiments include the transition between two levels of energy and the generation of Schrödinger cat states.
Keywords
port-Hamiltonian systems; open quantum systems
Citation
- ISBN: 9783031382987
- Publisher: Springer Nature Switzerland
- DOI: 10.1007/978-3-031-38299-4_41
- Note: International Conference on Geometric Science of Information
BibTeX
@inbook{Verrier_2023,
title={{Modelling and Structure-Preserving Discretization of the Schrödinger as a Port-Hamiltonian System, and Simulation of a Controlled Quantum Box}},
ISBN={9783031382994},
ISSN={1611-3349},
DOI={10.1007/978-3-031-38299-4_41},
booktitle={{Geometric Science of Information}},
publisher={Springer Nature Switzerland},
author={Verrier, Gabriel and Haine, Ghislain and Matignon, Denis},
year={2023},
pages={392--401}
}
References
- Bahrami, M., Großardt, A., Donadi, S. & Bassi, A. The Schrödinger–Newton equation and its foundations. New Journal of Physics vol. 16 115007 (2014) – 10.1088/1367-2630/16/11/115007
- Brugnoli, A., Haine, G. & Matignon, D. Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control. IFAC-PapersOnLine vol. 55 418–423 (2022) – 10.1016/j.ifacol.2022.11.089
- Brugnoli, A., Haine, G. & Matignon, D. Stokes-Dirac structures for distributed parameter port-Hamiltonian systems: An analytical viewpoint. Communications in Analysis and Mechanics vol. 15 362–387 (2023) – 10.3934/cam.2023018
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Hall, B. C. Quantum Theory for Mathematicians. Graduate Texts in Mathematics (Springer New York, 2013). doi:10.1007/978-1-4614-7116-5 – 10.1007/978-1-4614-7116-5
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Verrier, G., Haine, G. & Matignon, D. Modelling and Structure-Preserving Discretization of the Schrödinger as a Port-Hamiltonian System, and Simulation of a Controlled Quantum Box. Lecture Notes in Computer Science 392–401 (2023) doi:10.1007/978-3-031-38299-4_41 – 10.1007/978-3-031-38299-4_41