Modeling and boundary control of infinite dimensional systems in the Brayton–Moser framework
Authors
Krishna Chaitanya Kosaraju, Ramkrishna Pasumarthy, Dimitri Jeltsema
Abstract
It is well documented that shaping the energy of finite-dimensional port-Hamiltonian systems by interconnection is severely restricted due to the presence of dissipation. This phenomenon is usually referred to as the dissipation obstacle. In this paper, we show the existence of dissipation obstacle in infinite dimensional systems. Motivated by this, we present the Brayton–Moser formulation, together with its equivalent Dirac structure. Analogous to finite dimensional systems, identifying the underlying gradient structure is crucial in presenting the stability analysis. We elucidate this through an example of Maxwell’s equations with zero energy flows through the boundary. In the case of mixed-finite and infinite-dimensional systems, we find admissible pairs for all the subsystems while preserving the overall structure. We illustrate this using a transmission line system interconnected to finite dimensional systems through its boundary. This ultimately leads to a new passive map, using this we solve a boundary control problem, circumventing the dissipation obstacle.
Citation
- Journal: IMA Journal of Mathematical Control and Information
- Year: 2019
- Volume: 36
- Issue: 2
- Pages: 485–513
- Publisher: Oxford University Press (OUP)
- DOI: 10.1093/imamci/dnx057
BibTeX
@article{Chaitanya_Kosaraju_2017,
title={{Modeling and boundary control of infinite dimensional systems in the Brayton–Moser framework}},
volume={36},
ISSN={1471-6887},
DOI={10.1093/imamci/dnx057},
number={2},
journal={IMA Journal of Mathematical Control and Information},
publisher={Oxford University Press (OUP)},
author={Chaitanya Kosaraju, Krishna and Pasumarthy, Ramkrishna and Jeltsema, Dimitri},
year={2017},
pages={485--513}
}
References
- Abraham, Manifolds, Tensor Analysis, and Applications (2012)
- Blankenstein, G. A Joined Geometric Structure for Hamiltonian and Gradient Control Systems. IFAC Proceedings Volumes vol. 36 51–56 (2003) – 10.1016/s1474-6670(17)38866-3
- Blankenstein, G. Geometric modeling of nonlinear RLC circuits. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 52 396–404 (2005) – 10.1109/tcsi.2004.840481
- Brayton, R. K. & Miranker, W. L. A stability theory for nonlinear mixed initial boundary value problems. Archive for Rational Mechanics and Analysis vol. 17 358–376 (1964) – 10.1007/bf00250472
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. II. Quarterly of Applied Mathematics vol. 22 81–104 (1964) – 10.1090/qam/169747
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- García-Canseco, E., Jeltsema, D., Ortega, R. & Scherpen, J. M. A. Power-based control of physical systems. Automatica vol. 46 127–132 (2010) – 10.1016/j.automatica.2009.10.012
- Jeltsema, D., Ortega, R. & Scherpen, J. M. A. On passivity and power-balance inequalities of nonlinear rlc circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 50 1174–1179 (2003) – 10.1109/tcsi.2003.816332
- Jeltsema, D. & Scherpen, J. M. A. A power-based description of standard mechanical systems. Systems & Control Letters vol. 56 349–356 (2007) – 10.1016/j.sysconle.2006.10.015
- Jeltsema, Multidomain modeling of nonlinear networks and systems. IEEE Control Syst. (2009)
- Jeltsema, D. & Schaft, A. van der. Pseudo-gradient and Lagrangian boundary control system formulation of electromagnetic fields. Journal of Physics A: Mathematical and Theoretical vol. 40 11627–11643 (2007) – 10.1088/1751-8113/40/38/013
- Koopman, J. & Jeltsema, D. Casimir-Based Control Beyond the Dissipation Obstacle. IFAC Proceedings Volumes vol. 45 173–177 (2012) – 10.3182/20120829-3-it-4022.00046
- Kosaraju, Alternative passive maps for infinite-dimensional systems using mixed-potential functions. IFAC Workshop Lagrangian Hamiltonian Methods Non Linear Control, Lyon, France (2015)
- Kosaraju, K. C. & Pasumarthy, R. Power-Based Methods for Infinite-Dimensional Systems. Lecture Notes in Control and Information Sciences 277–301 (2015) doi:10.1007/978-3-319-20988-3_15 – 10.1007/978-3-319-20988-3_15
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Luo, Stability and Stabilization of Infinite Dimensional Systems with Applications (2012)
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Transactions on Automatic Control vol. 48 1762–1767 (2003) – 10.1109/tac.2003.817918
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Pasumarthy, On analysis and control of interconnected finite-and infinite-dimensional physical systems. Ph.D. Thesis (2006)
- Pasumarthy, On power balancing and stabilization for a class of infinite-dimensional systems. Proc. Mathematical Theory of Networks and Systems (2014)
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- Rodríguez, On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. IEEE (2001)
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Swaters, Introduction to Hamiltonian Fluid Dynamics and Stability Theory (1999)
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3