Matrix-valued Impedances with Fractional Derivatives and Integrals in Boundary Feedback Control: a port-Hamiltonian approach
Authors
Yann Le Gorrec, Denis Matignon
Abstract
This paper discusses the passivity of the port-Hamiltonian formulation of a multivariable impedance matching boundary feedback of fractional order, expressed through diffusive representation. It is first shown in the 1D-wave equation case that the impedance matching boundary feedback can be written as a passive feedback on the boundary port variables. In the Euler-Bernoulli case, the impedance matching feedback matrix involves fractional derivatives and integrals. It is shown that the usual diffusive representation of such feedback is not formally a dissipative port-Hamiltonian system, even if from a frequency point of view this feedback proves passive.
Keywords
fractional differential equations; diffusive systems; pseudo-differential operators; hereditary mechanics; stability; numerical methods; boundary control of PDEs
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 13
- Pages: 182–187
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.10.236
- Note: 5th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2015- Lyon, France, 4–7 July 2015
BibTeX
@article{Le_Gorrec_2015,
title={{Matrix-valued Impedances with Fractional Derivatives and Integrals in Boundary Feedback Control: a port-Hamiltonian approach}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.10.236},
number={13},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Le Gorrec, Yann and Matignon, Denis},
year={2015},
pages={182--187}
}
References
- Haddar, H. & Matignon, D. Well-posedness of non-linear systems when coupled with diffusive systems. IFAC Proceedings Volumes vol. 37 237–242 (2004) – 10.1016/s1474-6670(17)31229-6
- Le Gorrec, Y. & Matignon, D. Coupling between hyperbolic and diffusive systems: A port-Hamiltonian formulation. European Journal of Control vol. 19 505–512 (2013) – 10.1016/j.ejcon.2013.09.003
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Levadoux, D. & Montseny, G. Diffusive Realization of the Impedance Operator on Circular Boundary for 2D Wave Equation. Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 136–141 (2003) doi:10.1007/978-3-642-55856-6_22 – 10.1007/978-3-642-55856-6_22
- Matignon, D. Stability properties for generalized fractional differential systems. ESAIM: Proceedings vol. 5 145–158 (1998) – 10.1051/proc:1998004
- Matignon, D. & Prieur, C. Asymptotic stability of Webster-Lokshin equation. Mathematical Control & Related Fields vol. 4 481–500 (2014) – 10.3934/mcrf.2014.4.481
- Matsuda, K. & Fujii, H. H(infinity) optimized wave-absorbing control - Analytical and experimental results. Journal of Guidance, Control, and Dynamics vol. 16 1146–1153 (1993) – 10.2514/3.21139
- Mbodje, B. & Montseny, G. Boundary fractional derivative control of the wave equation. IEEE Transactions on Automatic Control vol. 40 378–382 (1995) – 10.1109/9.341815
- Montseny, G., Audounet, J. & Matignon, D. Fractional integro-differential boundary control of the Euler-Bernoulli beam. Proceedings of the 36th IEEE Conference on Decision and Control vol. 5 4973–4978 – 10.1109/cdc.1997.649837
- Montseny, G., Audounet, J., and Matignon, D. (2000). Perfectly absorbing boundary feedback control for wave equations: a diffusive formulation. in Proc. Waves, Santiago de Compostela, Spain, INRIA-SIAM.
- Oldam, K. and Spanier, J. (1985). The fractional calculus - theory and applications of differentiation and integration of arbitrary order. Academic Press.
- von Flotow, A. H. & Schafer, B. Wave-absorbing controllers for a flexible beam. Journal of Guidance, Control, and Dynamics vol. 9 673–680 (1986) – 10.2514/3.20163