Interconnection and Damping Assignment Passivity-Based Control for Gait Generation in Underactuated Compass-Like Robots
Authors
Pierluigi Arpenti, Fabio Ruggiero, Vincenzo Lippiello
Abstract
A compass-like biped robot can go down a gentle slope without the need of actuation through a proper choice of its dynamic parameter and starting from a suitable initial condition. Addition of control actions is requested to generate additional gaits and robustify the existing one. This paper designs an interconnection and damping assignment passivity-based control, rooted within the port-Hamiltonian framework, to generate further gaits with respect to state-of-the-art methodologies, enlarge the basin of attraction of existing gaits, and further robustify the system against controller discretization and parametric uncertainties. The performance of the proposed algorithm is validated through numerical simulations and comparison with existing passivity-based techniques.
Citation
- Journal: 2020 IEEE International Conference on Robotics and Automation (ICRA)
- Year: 2020
- Volume:
- Issue:
- Pages: 9802–9808
- Publisher: IEEE
- DOI: 10.1109/icra40945.2020.9196598
BibTeX
@inproceedings{Arpenti_2020,
title={{Interconnection and Damping Assignment Passivity-Based Control for Gait Generation in Underactuated Compass-Like Robots}},
DOI={10.1109/icra40945.2020.9196598},
booktitle={{2020 IEEE International Conference on Robotics and Automation (ICRA)}},
publisher={IEEE},
author={Arpenti, Pierluigi and Ruggiero, Fabio and Lippiello, Vincenzo},
year={2020},
pages={9802--9808}
}
References
- Spong, M., Holm, J. & Lee, D. Passivity-Based Control of Bipedal Locomotion. IEEE Robotics & Automation Magazine vol. 14 30–40 (2007) – 10.1109/mra.2007.380638
- Holm, J. K. & Spong, M. W. Kinetic energy shaping for gait regulation of underactuated bipeds. 2008 IEEE International Conference on Control Applications 1232–1238 (2008) doi:10.1109/cca.2008.4629638 – 10.1109/cca.2008.4629638
- Bloch, A. M., Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Transactions on Automatic Control vol. 45 2253–2270 (2000) – 10.1109/9.895562
- Bloch, A. M., Dong Eui Chang, Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping. IEEE Transactions on Automatic Control vol. 46 1556–1571 (2001) – 10.1109/9.956051
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- ortega, Putting energy back into control. IEEE Control Systems Magazine (2001)
- Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Transactions on Automatic Control vol. 50 1936–1955 (2005) – 10.1109/tac.2005.860292
- duindam, Port-Based Modelling and Control for Efficient Bipedal Walking Robots. Ph D Dissertation Ph D dissertation (2006)
- Serra, D. et al. Control of Nonprehensile Planar Rolling Manipulation: A Passivity-Based Approach. IEEE Transactions on Robotics vol. 35 317–329 (2019) – 10.1109/tro.2018.2887356
- Arpenti, P., Serra, D., Ruggiero, F. & Lippiello, V. Control of the TORA System through the IDA-PBC without Explicit Solution of Matching Equations. 2019 Third IEEE International Conference on Robotic Computing (IRC) 381–385 (2019) doi:10.1109/irc.2019.00069 – 10.1109/irc.2019.00069
- Wieber, P.-B., Tedrake, R. & Kuindersma, S. Modeling and Control of Legged Robots. Springer Handbooks 1203–1234 (2016) doi:10.1007/978-3-319-32552-1_48 – 10.1007/978-3-319-32552-1_48
- de-León-Gómez, Ví., Santibañez, V. & Sandoval, J. Interconnection and damping assignment passivity-based control for a compass-like biped robot. International Journal of Advanced Robotic Systems vol. 14 172988141771659 (2017) – 10.1177/1729881417716593
- Yeatman, M. R., Lv, G. & Gregg, R. D. Passivity-Based Control with a Generalized Energy Storage Function for Robust Walking of Biped Robots. 2018 Annual American Control Conference (ACC) 2958–2963 (2018) doi:10.23919/acc.2018.8431783 – 10.23919/acc.2018.8431783
- Collins, S., Ruina, A., Tedrake, R. & Wisse, M. Efficient Bipedal Robots Based on Passive-Dynamic Walkers. Science vol. 307 1082–1085 (2005) – 10.1126/science.1107799
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- goswami, Compass-like biped robot Part I: Stability and bifurcations of passive gaits. Techical Report (1996)
- Kuo, A. D. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Human Movement Science vol. 26 617–656 (2007) – 10.1016/j.humov.2007.04.003
- McGeer, T. Passive Dynamic Walking. The International Journal of Robotics Research vol. 9 62–82 (1990) – 10.1177/027836499000900206
- Spong, M. W. & Bullo, F. CONTROLLED SYMMETRIES AND PASSIVE WALKING. IFAC Proceedings Volumes vol. 35 557–562 (2002) – 10.3182/20020721-6-es-1901.00905
- Ramirez-Alpizar, I. G., Higashimori, M., Kaneko, M., Tsai, C.-H. D. & Kao, I. Dynamic Nonprehensile Manipulation for Rotating a Thin Deformable Object: An Analogy to Bipedal Gaits. IEEE Transactions on Robotics vol. 28 607–618 (2012) – 10.1109/tro.2011.2181098
- Bhounsule, P. A., Cortell, J. & Ruina, A. DESIGN AND CONTROL OF RANGER: AN ENERGY-EFFICIENT, DYNAMIC WALKING ROBOT. Adaptive Mobile Robotics 441–448 (2012) doi:10.1142/9789814415958_0057 – 10.1142/9789814415958_0057
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- Shiriaev, A. S., Freidovich, L. B. & Gusev, S. V. Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom. IEEE Transactions on Automatic Control vol. 55 893–906 (2010) – 10.1109/tac.2010.2042000