Authors

Joel Ferguson, Naoki Sakata, Kenji Fujimoto

Abstract

This letter examines the dynamic properties of a hybrid momentum observer for mechanical systems, extending the previously-reported results. The observer estimates the momentum vector from measurements of the configuration vector and is shown to be input-to-state stable with respect to external perturbations. In the absence of external perturbation the observer is shown to be globally exponentially stable, converging at a user-controlled rate. The observer is constructed from a port-Hamiltonian representation of mechanical systems and exhibits a passivity property with respect to an input-output port that can be utilised for subsequent control design. The theoretical results are demonstrated via numerical simulation on a 2-link vertical manipulator.

Citation

  • Journal: IEEE Control Systems Letters
  • Year: 2024
  • Volume: 8
  • Issue:
  • Pages: 1361–1366
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/lcsys.2024.3410633

BibTeX

@article{Ferguson_2024,
  title={{Input-to-State Stable Hybrid Momentum Observer for Mechanical Systems}},
  volume={8},
  ISSN={2475-1456},
  DOI={10.1109/lcsys.2024.3410633},
  journal={IEEE Control Systems Letters},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Ferguson, Joel and Sakata, Naoki and Fujimoto, Kenji},
  year={2024},
  pages={1361--1366}
}

Download the bib file

References

  • Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
  • Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Transactions on Automatic Control vol. 50 1936–1955 (2005) – 10.1109/tac.2005.860292
  • Ferguson, J., Donaire, A. & Middleton, R. H. Kinetic-Potential Energy Shaping for Mechanical Systems With Applications to Tracking. IEEE Control Systems Letters vol. 3 960–965 (2019) – 10.1109/lcsys.2019.2919842
  • O’Brien, T., Ferguson, J. & Donaire, A. Exponentially Stable Regulation of Mechanical Systems to a Path. IFAC-PapersOnLine vol. 56 6801–6806 (2023) – 10.1016/j.ifacol.2023.10.389
  • Astolfi, A., Karagiannis, D. & Ortega, R. Nonlinear and Adaptive Control with Applications. Communications and Control Engineering (Springer London, 2008). doi:10.1007/978-1-84800-066-7 – 10.1007/978-1-84800-066-7
  • Astolfi, A., Ortega, R. & Venkatraman, A. A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica vol. 46 182–189 (2010) – 10.1016/j.automatica.2009.10.027
  • Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Transactions on Automatic Control vol. 55 1059–1074 (2010) – 10.1109/tac.2010.2042010
  • Sarras, On the constructive design of control laws and observers for mechanical systems by possitive, immersion and invariance. (2010)
  • Romero, J. G. & Ortega, R. A Globally Exponentially Stable Tracking Controller for Mechanical Systems with Friction Using Position Feedback. IFAC Proceedings Volumes vol. 46 371–376 (2013) – 10.3182/20130904-3-fr-2041.00174
  • Romero, J. G. & Ortega, R. Two globally convergent adaptive speed observers for mechanical systems. Automatica vol. 60 7–11 (2015) – 10.1016/j.automatica.2015.06.032
  • Romero, J. G., Ortega, R. & Sarras, I. A Globally Exponentially Stable Tracking Controller for Mechanical Systems Using Position Feedback. IEEE Transactions on Automatic Control vol. 60 818–823 (2015)10.1109/tac.2014.2330701
  • Brentari, M., Bosetti, P. & Zaccarian, L. A Class of Hybrid Velocity Observers for Angular Measurements With Jumps. IEEE Control Systems Letters vol. 2 617–622 (2018) – 10.1109/lcsys.2018.2845307
  • Gui, H., Wang, Y. & Su, W. Hybrid Global Finite-Time Dual-Quaternion Observer and Controller for Velocity-Free Spacecraft Pose Tracking. IEEE Transactions on Control Systems Technology vol. 29 2129–2141 (2021) – 10.1109/tcst.2020.3030670
  • Ferguson, J., Donaire, A. & Middleton, R. H. Passive momentum observer for mechanical systems. IFAC-PapersOnLine vol. 54 131–136 (2021) – 10.1016/j.ifacol.2021.11.067
  • Goebel, R., Sanfelice, R. G. & Teel, A. R. Hybrid Dynamical Systems. (2012) doi:10.23943/princeton/9780691153896.001.0001 – 10.23943/princeton/9780691153896.001.0001
  • Sanfelice, R. G. Hybrid Feedback Control. (2021) doi:10.2307/j.ctv131btfx – 10.2307/j.ctv131btfx
  • Lee, J. M. Introduction to Smooth Manifolds. Graduate Texts in Mathematics (Springer New York, 2012). doi:10.1007/978-1-4419-9982-5 – 10.1007/978-1-4419-9982-5
  • Pettersson, S. & Lennartson, B. Controller design of hybrid systems. Lecture Notes in Computer Science 240–254 (1997) doi:10.1007/bfb0014729 – 10.1007/bfb0014729
  • Khalil, Nonlinear Systems (1996)
  • Horn, R. A. & Johnson, C. R. Matrix Analysis. (1985) doi:10.1017/cbo9780511810817 – 10.1017/cbo9780511810817