IDA-PBC for Polynomial Systems: An SOS-based Approach
Authors
Abstract
Algebraic solutions for the Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) problem are introduced for a class of affine polynomial systems. These classes do not involve to solve partial differential equations for the matching condition. The proposed procedure leads to conditions that may be solved by using sum of squares (SOS) and semidefinite programming (SDP). Furthermore, some special parametrizations for the desired Hamiltonian function are analyzed and respective reductions into SOS inequalities are provided. Results are validated on a polynomial second order system and the well-known cart-pole system.
Keywords
Port-Hamiltonian Systems; IDA-PBC; Polynomial Systems; Sum of Squares
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 13
- Pages: 366–371
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.07.306
- Note: 2nd IFAC Conference on Modelling, Identification and Control of Nonlinear Systems MICNON 2018- Guadalajara, Jalisco, Mexico, 20–22 June 2018
BibTeX
@article{Cieza_2018,
title={{IDA-PBC for Polynomial Systems: An SOS-based Approach}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.07.306},
number={13},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Cieza, Oscar B. and Reger, Johann},
year={2018},
pages={366--371}
}
References
- Acosta, J. A. & Astolfi, A. On the PDEs arising in IDA-PBC. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 2132–2137 (2009) doi:10.1109/cdc.2009.5400580 – 10.1109/cdc.2009.5400580
- Astolfi, A., Ortega, R. & Sepulchre, R. Stabilization and Disturbance Attenuation of Nonlinear Systems Using Dissipativity Theory. European Journal of Control vol. 8 408–431 (2002) – 10.3166/ejc.8.408-431
- Batlle, C., Dòria-Cerezo, A., Espinosa-Pérez, G. & Ortega, R. Simultaneous Interconnection and Damping Assignment Passivity-Based Control: Two Practical Examples. Lecture Notes in Control and Information Sciences 157–169 doi:10.1007/978-3-540-73890-9_12 – 10.1007/978-3-540-73890-9_12
- Borja, P., Cisneros, R. & Ortega, R. A constructive procedure for energy shaping of port—Hamiltonian systems. Automatica vol. 72 230–234 (2016) – 10.1016/j.automatica.2016.05.028
- Castaños, F. & Gromov, D. Passivity-based control of implicit port-Hamiltonian systems with holonomic constraints. Systems & Control Letters vol. 94 11–18 (2016) – 10.1016/j.sysconle.2016.04.004
- Delgado, Overcoming the Dissipation Condition in Passivity-based Control for a class of mechanical systems (2014)
- Donaire, A. et al. Shaping the Energy of Mechanical Systems Without Solving Partial Differential Equations. IEEE Transactions on Automatic Control vol. 61 1051–1056 (2016) – 10.1109/tac.2015.2458091
- Donaire, A., Ortega, R. & Romero, J. G. Simultaneous interconnection and damping assignment passivity-based control of mechanical systems using dissipative forces. Systems & Control Letters vol. 94 118–126 (2016) – 10.1016/j.sysconle.2016.05.006
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control vol. 10 451–468 (2004) – 10.3166/ejc.10.451-468
- Ichihara, H. Optimal Control for Polynomial Systems Using Matrix Sum of Squares Relaxations. IEEE Transactions on Automatic Control vol. 54 1048–1053 (2009) – 10.1109/tac.2009.2017159
- Lofberg, J. & Parrilo, P. A. From coefficients to samples: a new approach to SOS optimization. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3154–3159 (2004) doi:10.1109/cdc.2004.1428957 – 10.1109/cdc.2004.1428957
- Nunna, K., Sassano, M. & Astolfi, A. Constructive Interconnection and Damping Assignment for Port-Controlled Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 60 2350–2361 (2015) – 10.1109/tac.2015.2400663
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., Liu, Z. & Su, H. Control via interconnection and damping assignment of linear time-invariant systems: a tutorial. International Journal of Control vol. 85 603–611 (2012) – 10.1080/00207179.2012.660734
- Papachristodoulou, SOSTOOLS: Sum of squares optimization toolbox for MATLAB. User’s guide (2016)
- Prajna, S., van der Schaft, A. & Meinsma, G. An LMI approach to stabilization of linear port-controlled Hamiltonian systems. Systems & Control Letters vol. 45 371–385 (2002) – 10.1016/s0167-6911(01)00195-5
- Romero, Global Stabilisation of Underactuated Mechanical Systems via PID Passivity-Based Control. 20th IF AC World Congress (2017)
- Scherer, C. W. & Hol, C. W. J. Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs. Mathematical Programming vol. 107 189–211 (2005) – 10.1007/s10107-005-0684-2
- Valmorbida, G., Tarbouriech, S. & Garcia, G. Design of Polynomial Control Laws for Polynomial Systems Subject to Actuator Saturation. IEEE Transactions on Automatic Control vol. 58 1758–1770 (2013) – 10.1109/tac.2013.2248256
- Viola, G., Ortega, R., Banavar, R., Acosta, J. A. & Astolfi, A. Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes. IEEE Transactions on Automatic Control vol. 52 1093–1099 (2007) – 10.1109/tac.2007.899064
- Zhu, Y., Zhao, D., Yang, X. & Zhang, Q. Policy Iteration for $H_\infty $ Optimal Control of Polynomial Nonlinear Systems via Sum of Squares Programming. IEEE Transactions on Cybernetics vol. 48 500–509 (2018) – 10.1109/tcyb.2016.2643687