IDA-PBC for LTI dynamics under input delays: a reduction approach
Authors
Mattia Mattioni, Salvatore Monaco, Dorothee Normand-Cyrot
Abstract
In this paper, the problem of stabilizing linear port-controlled Hamiltonian dynamics through interconnection and damping assignment in presence of input delays is considered. The contribution exploits the reduction approach allowing to reveal and shape the energy properties of the time-delay dynamics. Performances are illustrated on a simple mechanical system.
Citation
- Journal: 2021 American Control Conference (ACC)
- Year: 2021
- Volume:
- Issue:
- Pages: 2497–2502
- Publisher: IEEE
- DOI: 10.23919/acc50511.2021.9482818
BibTeX
@inproceedings{Mattioni_2021,
title={{IDA-PBC for LTI dynamics under input delays: a reduction approach}},
DOI={10.23919/acc50511.2021.9482818},
booktitle={{2021 American Control Conference (ACC)}},
publisher={IEEE},
author={Mattioni, Mattia and Monaco, Salvatore and Normand-Cyrot, Dorothee},
year={2021},
pages={2497--2502}
}
References
- Fridman, E. & Shaked, U. On delay-dependent passivity. IEEE Trans. Automat. Contr. 47, 664–669 (2002) – 10.1109/9.995046
- Li, Z., Wang, J. & Shao, H. Delay-dependent dissipative control for linear time-delay systems. Journal of the Franklin Institute 339, 529–542 (2002) – 10.1016/s0016-0032(02)00030-3
- Mahmoud, M. S. & Ismail, A. Passivity and passification of time-delay systems. Journal of Mathematical Analysis and Applications 292, 247–258 (2004) – 10.1016/j.jmaa.2003.11.055
- Chopra, N. Passivity results for interconnected systems with time delay. 2008 47th IEEE Conference on Decision and Control 4620–4625 (2008) doi:10.1109/cdc.2008.4739368 – 10.1109/cdc.2008.4739368
- mattioni, IEEE Conference on Decision and Control (CDC) (0)
- Mazenc, F. & Normand-Cyrot, D. Reduction Model Approach for Linear Systems With Sampled Delayed Inputs. IEEE Trans. Automat. Contr. 58, 1263–1268 (2013) – 10.1109/tac.2013.2254193
- Mazenc, F. & Malisoff, M. Local Stabilization of Nonlinear Systems Through the Reduction Model Approach. IEEE Trans. Automat. Contr. 59, 3033–3039 (2014) – 10.1109/tac.2014.2317292
- Mazenc, F., Malisoff, M. & Niculescu, S.-I. Reduction Model Approach for Linear Time-Varying Systems With Delays. IEEE Trans. Automat. Contr. 59, 2068–2082 (2014) – 10.1109/tac.2014.2320308
- Artstein, Z. Linear systems with delayed controls: A reduction. IEEE Trans. Automat. Contr. 27, 869–879 (1982) – 10.1109/tac.1982.1103023
- Ortega, R., Liu, Z. & Su, H. Control via interconnection and damping assignment of linear time-invariant systems: a tutorial. International Journal of Control 85, 603–611 (2012) – 10.1080/00207179.2012.660734
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes 25, 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- brogliato, Dissipative systems analysis and control. Theory and Applications (2007)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. Port-Hamiltonian Modeling for Control. Annu. Rev. Control Robot. Auton. Syst. 3, 393–416 (2020) – 10.1146/annurev-control-081219-092250
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- ortega, Passivity-based control of Euler-Lagrange Systems Mechanical Electrical and Electromechanical Applications (2013)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Niculescu, S.-I. & Lozano, R. On the passivity of linear delay systems. IEEE Trans. Automat. Contr. 46, 460–464 (2001) – 10.1109/9.911424
- Karafyllis, I. & Krstic, M. Delay-robustness of linear predictor feedback without restriction on delay rate. Automatica 49, 1761–1767 (2013) – 10.1016/j.automatica.2013.02.019
- Mattioni, M., Monaco, S. & Normand-Cyrot, D. Sampled-Data Reduction of Nonlinear Input-Delayed Dynamics. IEEE Control Syst. Lett. 1, 116–121 (2017) – 10.1109/lcsys.2017.2710118
- fridman, Introduction to Time-Delay Systems Analysis and Control (0)
- Mattioni, M., Monaco, S. & Normand-Cyrot, D. Nonlinear discrete-time systems with delayed control: A reduction. Systems & Control Letters 114, 31–37 (2018) – 10.1016/j.sysconle.2018.02.007