FROM CONSERVATION LAWS TO PORT-HAMILTONIAN REPRESENTATIONS OF DISTRIBUTED-PARAMETER SYSTEMS
Authors
B.M. Maschke, A.J. van der Schaft
Abstract
In this paper it is shown how the port-Hamiltonian formulation of distributed-parameter systems is closely related to the general thermodynamic framework of systems of conservation laws and closure equations. The situation turns out to be similar to the lumped-parameter case where the Dirac structure captures the basic interconnection laws, and the closure equations correspond to the constitutive relations of the energy-storing elements.
Keywords
Interconnected systems; modeling; energy storage; geometric theory
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2005
- Volume: 38
- Issue: 1
- Pages: 483–488
- Publisher: Elsevier BV
- DOI: 10.3182/20050703-6-cz-1902.00735
- Note: 16th IFAC World Congress
BibTeX
@article{Maschke_2005,
title={{FROM CONSERVATION LAWS TO PORT-HAMILTONIAN REPRESENTATIONS OF DISTRIBUTED-PARAMETER SYSTEMS}},
volume={38},
ISSN={1474-6670},
DOI={10.3182/20050703-6-cz-1902.00735},
number={1},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Maschke, B.M. and van der Schaft, A.J.},
year={2005},
pages={483--488}
}
References
- Blankenstein, G. & van der Schaft, A. J. Symmetry and reduction in implicit generalized Hamiltonian systems. Reports on Mathematical Physics 47, 57–100 (2001) – 10.1016/s0034-4877(01)90006-0
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Dorfman, (1993)
- Godlewsky, (1996)
- Karnopp, (1990)
- Maschke, B. M. J. & van der Schaft, A. J. Port Controlled Hamiltonian Representation of Distributed Parameter Systems. IFAC Proceedings Volumes 33, 27–37 (2000) – 10.1016/s1474-6670(17)35543-x
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Olver, (1993)
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Prigogine, (1962)
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- Van der Schaft, A. J. & Maschke, B. M. Fluid dynamical systems as Hamiltonian boundary control systems. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 5 4497–4502 – 10.1109/cdc.2001.980911
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Serre, (1999)