Authors

Renming Yang, Liying Sun, Guangyuan Zhang, Qiang Zhang

Abstract

This paper investigates the finite-time stability (FTS) and finite-time stabilization for a class of nonlinear singular time-delay Hamiltonian systems, and proposes a number of new results on these issues. Firstly, an equivalent form is obtained for the nonlinear singular time-delay Hamiltonian systems by the singular matrix decomposition method, based on which some delay-independent and delay-dependent conditions on the FTS are derived for the systems by constructing a kind of novel Lyapunov function. Secondly, we use the equivalent form as well as the energy shaping plus damping injection technique to investigate the finite-time stabilization problem for a class of nonlinear singular port-controlled Hamiltonian (PCH) systems with time delay, and present a specific control design procedure for the systems. Finally, we give several illustrative examples to show the effectiveness of the results obtained in this paper.

Citation

  • Journal: Journal of the Franklin Institute
  • Year: 2019
  • Volume: 356
  • Issue: 12
  • Pages: 5961–5992
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.jfranklin.2019.04.033

BibTeX

@article{Yang_2019,
  title={{Finite-time stability and stabilization of nonlinear singular time-delay systems via Hamiltonian method}},
  volume={356},
  ISSN={0016-0032},
  DOI={10.1016/j.jfranklin.2019.04.033},
  number={12},
  journal={Journal of the Franklin Institute},
  publisher={Elsevier BV},
  author={Yang, Renming and Sun, Liying and Zhang, Guangyuan and Zhang, Qiang},
  year={2019},
  pages={5961--5992}
}

Download the bib file

References

  • Bunse-Gerstner, A., Mehrmann, V. & Nichols, N. K. Regularization of Descriptor Systems by Derivative and Proportional State Feedback. SIAM J. Matrix Anal. & Appl. 13, 46–67 (1992) – 10.1137/0613007
  • Bhat, S. P. & Bernstein, D. S. Finite-Time Stability of Continuous Autonomous Systems. SIAM J. Control Optim. 38, 751–766 (2000) – 10.1137/s0363012997321358
  • Cheng, Energy-based stabilization of forced hamiltonian systems with its application to power systems. (1999)
  • Dai, (1989)
  • Faria, F. A., Assunção, E., Teixeira, M. C. M. & Cardim, R. Robust State‐Derivative Feedback LMI‐Based Designs for Linear Descriptor Systems. Mathematical Problems in Engineering 2010, (2009) – 10.1155/2010/927362
  • Fridman, E. Effects of small delays on stability of singularly perturbed systems. Automatica 38, 897–902 (2002) – 10.1016/s0005-1098(01)00265-5
  • Gu, (2003)
  • Yigwruang Hong, Jie Huang & Yangsheng Xu. On an output feedback finite-time stabilization problem. IEEE Trans. Automat. Contr. 46, 305–309 (2001) – 10.1109/9.905699
  • Hong, Y., Xu, Y. & Huang, J. Finite-time control for robot manipulators. Systems & Control Letters 46, 243–253 (2002) – 10.1016/s0167-6911(02)00130-5
  • Hong, Y. & Jiang, Z.-P. Finite-Time Stabilization of Nonlinear Systems With Parametric and Dynamic Uncertainties. IEEE Trans. Automat. Contr. 51, 1950–1956 (2006) – 10.1109/tac.2006.886515
  • Jiang, B., Kao, Y., Karimi, H. R. & Gao, C. Stability and Stabilization for Singular Switching Semi-Markovian Jump Systems With Generally Uncertain Transition Rates. IEEE Trans. Automat. Contr. 63, 3919–3926 (2018) – 10.1109/tac.2018.2819654
  • Karafyllis, I. Finite-Time Global Stabilization by Means of Time-Varying Distributed Delay Feedback. SIAM J. Control Optim. 45, 320–342 (2006) – 10.1137/040616383
  • Lewis, F. L. A survey of linear singular systems. Circuits Systems and Signal Process 5, 3–36 (1986) – 10.1007/bf01600184
  • Lin, J. L. & Chen, S. J. Robustness analysis of uncertain linear singular systems with output feedback control. IEEE Trans. Automat. Contr. 44, 1924–1929 (1999) – 10.1109/9.793738
  • Liu *, X. & W. C. Ho, D. Stabilization of non-linear differential-algebraic equation systems. International Journal of Control 77, 671–684 (2004) – 10.1080/00207170410001715013
  • Liu, H., Shi, P., Karimi, H. R. & Chadli, M. Finite-time stability and stabilisation for a class of nonlinear systems with time-varying delay. International Journal of Systems Science 47, 1433–1444 (2014) – 10.1080/00207721.2014.932467
  • Moulay, E., Dambrine, M., Yeganefar, N. & Perruquetti, W. Finite-time stability and stabilization of time-delay systems. Systems & Control Letters 57, 561–566 (2008) – 10.1016/j.sysconle.2007.12.002
  • MUKUNDAN, R. & DAYAWANSA, W. Feedback control of singular systems—proportional and derivative feedback of the state. International Journal of Systems Science 14, 615–632 (1983) – 10.1080/00207728308926483
  • Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Trans. Automat. Contr. 50, 60–75 (2005)10.1109/tac.2004.840477
  • Orlov, Y. Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems. SIAM J. Control Optim. 43, 1253–1271 (2004) – 10.1137/s0363012903425593
  • Pasumarthy, On stability of time-delay hamiltonian systems analysis. (2009)
  • Papachristodoulou, Analysis of nonlinear time-delay systems using the sum of squares decomposition. (2004)
  • Ren, Derivative feedback control for singular systems. (2007)
  • Rathinasamy, S., Rathika, M., Kaviarasan, B. & Shen, H. Stabilization Criteria for Singular Fuzzy Systems With Random Delay and Mixed Actuator Failures. Asian Journal of Control 20, 829–838 (2017) – 10.1002/asjc.1600
  • Ren, Asynchronous finite-time filtering of networked switched systems and its application: an event-driven method. IEEE Trans. Circuits Syst. CI Reg. Pap. (2018)
  • Sakthivel, R., Mohanapriya, S., Selvaraj, P., Karimi, H. R. & Marshal Anthoni, S. EID estimator-based modified repetitive control for singular systems with time-varying delay. Nonlinear Dyn 89, 1141–1156 (2017) – 10.1007/s11071-017-3506-1
  • Shen, T., Ortega, R., Lu, Q., Mei, S. & Tamura, K. Adaptive L2 Disturbance Attenuation Of Hamiltonian Systems With Parametric Perturbation And Application To Power Systems. Asian Journal of Control 5, 143–152 (2003) – 10.1111/j.1934-6093.2003.tb00105.x
  • Sun, W. & Fu, B. Adaptive control of time‐varying uncertain non‐linear systems with input delay: a Hamiltonian approach. IET Control Theory & Appl 10, 1844–1858 (2016) – 10.1049/iet-cta.2015.1165
  • Sun, W. & Peng, L. Robust Adaptive Control of Uncertain Stochastic Hamiltonian Systems with Time Varying Delay. Asian Journal of Control 18, 642–651 (2015) – 10.1002/asjc.1143
  • Sun, L. Y. & Wang, Y. Z. Stabilisation an control of a class of non-linear Hamiltonian descriptor systems with application to non-linear descriptor systems. IET Control Theory Appl. 4, 16–26 (2010) – 10.1049/iet-cta.2008.0324
  • Sun, L., Feng, G. & Wang, Y. Finite-time stabilization and H control for a class of nonlinear Hamiltonian descriptor systems with application to affine nonlinear descriptor systems. Automatica 50, 2090–2097 (2014) – 10.1016/j.automatica.2014.05.031
  • Shi, K. et al. Nonfragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process. Intl J Robust & Nonlinear 28, 1693–1714 (2017) – 10.1002/rnc.3980
  • Shi, New reliable nonuniform sampling control for uncertain chaotic neural networks under markov switching topologies. Appl. Math. Comput. (2019)
  • Shi, Reliable asynchronous sampled-data filtering of t-s fuzzy uncertain delayed neural networks with stochastic switched topologies. Fuzzy Sets Syst. (2019)
  • Stojanovic, Finite-time stability and stabilization of singular state-delay systems using improved estimation of a lower bound on a Lyapunov-like functional. Bull. Pol. Acad. Sci. Tech. Sci. (2015)
  • Wang, Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout. Appl. Math. Comput. (2018)
  • Wang, (2007)
  • Wang, Y., Li, C. & Cheng, D. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica 39, 1437–1443 (2003) – 10.1016/s0005-1098(03)00132-8
  • He-Sheng Wang, Chee-Fai Yung & Fan-Ren Chang. H/sub ∞/ control for nonlinear descriptor systems. IEEE Trans. Automat. Contr. 47, 1919–1925 (2002) – 10.1109/tac.2002.804465
  • Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037
  • Wang, Finite-time stabilization of port-controlled hamiltonian systems with application to nonlinear affine systems. (2008)
  • Shengyuan Xu, Van Dooren, P., Stefan, R. & Lam, J. Robust stability and stabilization for singular systems with state delay and parameter uncertainty. IEEE Trans. Automat. Contr. 47, 1122–1128 (2002) – 10.1109/tac.2002.800651
  • Yang, R. & Wang, Y. Stability for a class of nonlinear time-delay systems via Hamiltonian functional method. Sci. China Inf. Sci. 55, 1218–1228 (2012) – 10.1007/s11432-012-4573-z
  • [Yang, R. & Wang, Y. Finite-time stability analysis an <mml:math xmlns:mml=”http://www.w3.org/1998/Math/MathML” altimg=”si2.gif” display=”inline” overflow=”scroll” <mml:msub <mml:mrow H</mml:mi </mml:mrow <mml:mrow ∞</mml:mi </mml:mrow </mml:msub </mml:math control for a class of nonlinear time-delay Hamiltonian systems. Automatica 49, 390–401 (2013)](finite-time-stability-analysis-and-h) -- [10.1016/j.automatica.2012.11.034](https://doi.org/10.1016/j.automatica.2012.11.034)
  • Yang, Adaptive finite-time robust control of nonlinear delay hamiltonian systems via lyapunov-krasovskii method. Asian J. Control. (2018)
  • Zhai, J., Song, Z. & Karimi, H. R. Global finite-time control for a class of switched nonlinear systems with different powers via output feedback. International Journal of Systems Science 49, 2776–2783 (2018) – 10.1080/00207721.2018.1512679
  • Zhang, L., Wang, S., Karimi, H. R. & Jasra, A. Robust Finite-Time Control of Switched Linear Systems and Application to a Class of Servomechanism Systems. IEEE/ASME Trans. Mechatron. 20, 2476–2485 (2015) – 10.1109/tmech.2014.2385796
  • Zhu, S., Zhang, C., Cheng, Z. & Feng, J. Delay-Dependent Robust Stability Criteria for Two Classes of Uncertain Singular Time-Delay Systems. IEEE Trans. Automat. Contr. 52, 880–885 (2007) – 10.1109/tac.2007.895951