Exergetic Port-Hamiltonian Systems: Navier-Stokes-Fourier Fluid
Authors
Markus Lohmayer, Sigrid Leyendecker
Abstract
The Exergetic Port-Hamiltonian Systems modeling language combines a graphical syntax inspired by bond graphs with a port-Hamiltonian semantics akin to the GENERIC formalism. The syntax enables the modular and hierarchical specification of the composition pattern of lumped and distributed-parameter models. The semantics reflects the first and second law of thermodynamics as structural properties. Interconnected and hierarchically defined models of multiphysical thermodynamic systems can thus be expressed in a formal language accessible to humans and computers alike. We discuss a composed model of the Navier-Stokes-Fourier fluid on a fixed spatial domain as an example of an open distributed-parameter system. At the top level, the system comprises five subsystems which model kinetic energy storage, internal energy storage, thermal conduction, bulk viscosity, and shear viscosity.
Keywords
port-Hamiltonian systems; geometric fluid mechanics; thermodynamics; exergy; compositionality; bond graphs; GENERIC; exterior calculus
Citation
- Journal: IFAC-PapersOnLine
- Year: 2022
- Volume: 55
- Issue: 18
- Pages: 74–80
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2022.08.033
- Note: 4th IFAC Workshop on Thermodynamics Foundations of Mathematical Systems Theory TFMST 2022- Montreal, Canada, 25–27 July 2022
BibTeX
@article{Lohmayer_2022,
title={{Exergetic Port-Hamiltonian Systems: Navier-Stokes-Fourier Fluid}},
volume={55},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2022.08.033},
number={18},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Lohmayer, Markus and Leyendecker, Sigrid},
year={2022},
pages={74--80}
}
References
- Abraham, (1978)
- Badlyan, Open physical systems: from GENERIC to port-Hamiltonian systems. (2018)
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach. Physics of Fluids vol. 33 (2021) – 10.1063/5.0048359
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Hirani, (2003)
- Kanso, E. et al. On the geometric character of stress in continuum mechanics. Zeitschrift für angewandte Mathematik und Physik vol. 58 843–856 (2007) – 10.1007/s00033-007-6141-8
- Lohmayer, M., Kotyczka, P. & Leyendecker, S. Exergetic port-Hamiltonian systems: modelling basics. Mathematical and Computer Modelling of Dynamical Systems vol. 27 489–521 (2021) – 10.1080/13873954.2021.1979592
- Marsden, J. E., Ratiu, T. & Weinstein, A. Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Contemporary Mathematics 55–100 (1984) doi:10.1090/conm/028/751975 – 10.1090/conm/028/751975
- Marsden, J. E., Raţiu, T. & Weinstein, A. Semidirect products and reduction in mechanics. Transactions of the American Mathematical Society vol. 281 147–177 (1984) – 10.1090/s0002-9947-1984-0719663-1
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Rashad, Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy. Journal of Geometry and Physics (2021)
- Rashad, Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow. Journal of Geometry and Physics (2021)
- van der Schaft, Fluid dynamical systems as Hamiltonian boundary control systems. (2001)
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925