Authors

Florian Dorfler, John W. Simpson-Porco, Francesco Bullo

Abstract

Algebraic graph theory is a cornerstone in the study of electrical networks ranging from miniature integrated circuits to continental-scale power systems. Conversely, many fundamental results of algebraic graph theory were laid out by early electrical circuit analysts. In this paper, we survey some fundamental and historic as well as recent results on how algebraic graph theory informs electrical network analysis, dynamics, and design. In particular, we review the algebraic and spectral properties of graph adjacency, Laplacian, incidence, and resistance matrices and how they relate to the analysis, network reduction, and dynamics of certain classes of electrical networks. We study these relations for models of increasing complexity ranging from static resistive direct current (dc) circuits, over dynamic resistor..inductor..capacitor (RLC) circuits, to nonlinear alternating current (ac) power flow. We conclude this paper by presenting a set of fundamental open questions at the intersection of algebraic graph theory and electrical networks.

Citation

  • Journal: Proceedings of the IEEE
  • Year: 2018
  • Volume: 106
  • Issue: 5
  • Pages: 977–1005
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/jproc.2018.2821924

BibTeX

@article{Dorfler_2018,
  title={{Electrical Networks and Algebraic Graph Theory: Models, Properties, and Applications}},
  volume={106},
  ISSN={1558-2256},
  DOI={10.1109/jproc.2018.2821924},
  number={5},
  journal={Proceedings of the IEEE},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Dorfler, Florian and Simpson-Porco, John W. and Bullo, Francesco},
  year={2018},
  pages={977--1005}
}

Download the bib file

References

  • Colombino, M., Gros, D. & Dorfler, F. Global phase and voltage synchronization for power inverters: A decentralized consensus-inspired approach. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 5690–5695 (2017) doi:10.1109/cdc.2017.8264518 – 10.1109/cdc.2017.8264518
  • coletta, Performance measures in electric power networks under line contingencies (2017)
  • Chebotarev, P. Comments on ‘Consensus and cooperation in networked multi-agent systems’. Proceedings of the IEEE vol. 98 1353–1354 (2010) – 10.1109/jproc.2010.2049911
  • Cavanagh, K., Belk, J. A. & Turitsyn, K. Transient Stability Guarantees for Ad Hoc DC Microgrids. IEEE Control Systems Letters vol. 2 139–144 (2018) – 10.1109/lcsys.2017.2764441
  • Carmona, A., Encinas, A. M. & Mitjana, M. Effective resistances for ladder‐like chains. International Journal of Quantum Chemistry vol. 114 1670–1677 (2014) – 10.1002/qua.24740
  • Carlson, D. & Schneider, H. Inertia theorems for matrices: The semidefinite case. Journal of Mathematical Analysis and Applications vol. 6 430–446 (1963) – 10.1016/0022-247x(63)90023-4
  • chua, Linear and Nonlinear Circuits (1987)
  • chua, Introduction to Nonlinear Network Theory (1969)
  • chiang, Direct Methods for Stability Analysis of Electric Power Systems (2011)
  • Cherukuri, A., Gharesifard, B. & Cortés, J. Saddle-Point Dynamics: Conditions for Asymptotic Stability of Saddle Points. SIAM Journal on Control and Optimization vol. 55 486–511 (2017) – 10.1137/15m1026924
  • Caliskan, S. Y. & Tabuada, P. Towards Kron reduction of generalized electrical networks. Automatica vol. 50 2586–2590 (2014) – 10.1016/j.automatica.2014.08.017
  • bullo, Lectures on network systems. CreateSpace (2018)
  • Carli, R., Garin, F. & Zampieri, S. Quadratic indices for the analysis of consensus algorithms. 2009 Information Theory and Applications Workshop 96–104 (2009) doi:10.1109/ita.2009.5044929 – 10.1109/ita.2009.5044929
  • Bolognani, S. & Dorfler, F. Fast power system analysis via implicit linearization of the power flow manifold. 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton) 402–409 (2015) doi:10.1109/allerton.2015.7447032 – 10.1109/allerton.2015.7447032
  • Bolognani, S. & Zampieri, S. On the Existence and Linear Approximation of the Power Flow Solution in Power Distribution Networks. IEEE Transactions on Power Systems vol. 31 163–172 (2016) – 10.1109/tpwrs.2015.2395452
  • Bolognani, S. & Zampieri, S. A Distributed Control Strategy for Reactive Power Compensation in Smart Microgrids. IEEE Transactions on Automatic Control vol. 58 2818–2833 (2013) – 10.1109/tac.2013.2270317
  • Bott, R. & Duffin, R. J. Impedance Synthesis without Use of Transformers. Journal of Applied Physics vol. 20 816–816 (1949) – 10.1063/1.1698532
  • Borcea, L., Druskin, V. & Vasquez, F. G. Electrical impedance tomography with resistor networks. Inverse Problems vol. 24 035013 (2008) – 10.1088/0266-5611/24/3/035013
  • minty, On the axiomatic foundations of the theories of directed linear graphs, electrical networks and network-programming. J Math Mech (1966)
  • Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. II. Quarterly of Applied Mathematics vol. 22 81–104 (1964) – 10.1090/qam/169747
  • Miekkala, U. Graph properties for splitting with grounded Laplacian matrices. BIT vol. 33 485–495 (1993) – 10.1007/bf01990530
  • Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
  • dörfler, (2017)
  • Dörfler, F. & Bullo, F. Synchronization and Transient Stability in Power Networks and Nonuniform Kuramoto Oscillators. SIAM Journal on Control and Optimization vol. 50 1616–1642 (2012) – 10.1137/110851584
  • Xiao, W. & Gutman, I. Resistance distance and Laplacian spectrum. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) vol. 110 284–289 (2003) – 10.1007/s00214-003-0460-4
  • Xia, W. & Cao, M. Analysis and applications of spectral properties of grounded Laplacian matrices for directed networks. Automatica vol. 80 10–16 (2017) – 10.1016/j.automatica.2017.01.009
  • Young, G. F., Scardovi, L. & Leonard, N. E. Robustness of noisy consensus dynamics with directed communication. Proceedings of the 2010 American Control Conference (2010) doi:10.1109/acc.2010.5531506 – 10.1109/acc.2010.5531506
  • Yen, L., Saerens, M. & Fouss, F. A Link Analysis Extension of Correspondence Analysis for Mining Relational Databases. IEEE Transactions on Knowledge and Data Engineering vol. 23 481–495 (2011) – 10.1109/tkde.2010.142
  • Willems, J. C. & Verriest, E. I. The behavior of resistive circuits. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 8124–8129 (2009) doi:10.1109/cdc.2009.5400390 – 10.1109/cdc.2009.5400390
  • Chai Wah Wu & Chua, L. O. Application of Kronecker products to the analysis of systems with uniform linear coupling. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 42 775–778 (1995) – 10.1109/81.473586
  • Willson, A. N., Jr. On the Solutions of Equations for Nonlinear Resistive Networks. Bell System Technical Journal vol. 47 1755–1773 (1968) – 10.1002/j.1538-7305.1968.tb00101.x
  • wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003)
  • Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
  • Willems, J. C. Paradigms and puzzles in the theory of dynamical systems. IEEE Transactions on Automatic Control vol. 36 259–294 (1991) – 10.1109/9.73561
  • Willems, J. Terminals and Ports. IEEE Circuits and Systems Magazine vol. 10 8–26 (2010) – 10.1109/mcas.2010.938635
  • Dvijotham, K., Mallada, E. & Simpson-Porco, J. W. High-Voltage Solution in Radial Power Networks: Existence, Properties, and Equivalent Algorithms. IEEE Control Systems Letters vol. 1 322–327 (2017) – 10.1109/lcsys.2017.2717578
  • Dvijotham, K., Chertkov, M. & Low, S. A differential analysis of the power flow equations. 2015 54th IEEE Conference on Decision and Control (CDC) 23–30 (2015) doi:10.1109/cdc.2015.7402082 – 10.1109/cdc.2015.7402082
  • Dvijotham, K. & Chertkov, M. Convexity of structure preserving energy functions in power transmission: Novel results and applications. 2015 American Control Conference (ACC) 5035–5042 (2015) doi:10.1109/acc.2015.7172123 – 10.1109/acc.2015.7172123
  • Dvijotham, K. & Chertkov, M. Convexity of structure preserving energy functions in power transmission: Novel results and applications. 2015 American Control Conference (ACC) 5035–5042 (2015) doi:10.1109/acc.2015.7172123 – 10.1109/acc.2015.7172123
  • Doyle, P. & Snell, J. Random Walks and Electric Networks. Carus Mathematical Monographs (1984) doi:10.5948/upo9781614440222 – 10.5948/upo9781614440222
  • Dörfler, F., Chertkov, M. & Bullo, F. Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences vol. 110 2005–2010 (2013) – 10.1073/pnas.1212134110
  • Dörfler, F. & Bullo, F. Synchronization in complex networks of phase oscillators: A survey. Automatica vol. 50 1539–1564 (2014) – 10.1016/j.automatica.2014.04.012
  • Dorfler, F. & Bullo, F. Kron Reduction of Graphs With Applications to Electrical Networks. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 60 150–163 (2013) – 10.1109/tcsi.2012.2215780
  • Cotilla-Sanchez, E., Hines, P. D. H., Barrows, C. & Blumsack, S. Comparing the Topological and Electrical Structure of the North American Electric Power Infrastructure. IEEE Systems Journal vol. 6 616–626 (2012) – 10.1109/jsyst.2012.2183033
  • Zonetti, D., Ortega, R. & Benchaib, A. Modeling and control of HVDC transmission systems from theory to practice and back. Control Engineering Practice vol. 45 133–146 (2015)10.1016/j.conengprac.2015.09.012
  • zhou, Robust and Optimal Control (1996)
  • The Schur Complement and Its Applications. Numerical Methods and Algorithms (Springer-Verlag, 2005). doi:10.1007/b105056 – 10.1007/b105056
  • anderson, Network Analysis and Synthesis A Modern Systems Theory Approach (2006)
  • Amin, C. S., Chowdhury, M. H. & Ismail, Y. I. Realizable reduction of interconnect circuits including self and mutual inductances. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 24 271–277 (2005) – 10.1109/tcad.2004.840545
  • atabekov, Linear Network Theory (1965)
  • aolaritei, Hierarchical and distributed monitoring of voltage stability in distribution networks. IEEE Trans Power Syst (0)
  • zhang, Graph signal processing—A probabilistic framework. (2015)
  • Bapeswara Rao, V. V. & Aatre, V. K. Mesh-star transformation. Electronics Letters vol. 10 73–74 (1974) – 10.1049/el:19740056
  • dörfler, (2017)
  • Bamieh, B., Jovanovic, M. R., Mitra, P. & Patterson, S. Coherence in Large-Scale Networks: Dimension-Dependent Limitations of Local Feedback. IEEE Transactions on Automatic Control vol. 57 2235–2249 (2012) – 10.1109/tac.2012.2202052
  • Young, G. F., Scardovi, L. & Leonard, N. E. A New Notion of Effective Resistance for Directed Graphs—Part I: Definition and Properties. IEEE Transactions on Automatic Control vol. 61 1727–1736 (2016) – 10.1109/tac.2015.2481978
  • yu, Simple certificate of solvability of power flow equations for distribution systems. Proc IEEE Power Energy Soc General Meeting (2015)
  • Barabanov, N., Ortega, R., Grino, R. & Polyak, B. On Existence and Stability of Equilibria of Linear Time-Invariant Systems With Constant Power Loads. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 63 114–121 (2016) – 10.1109/tcsi.2015.2497559
  • Demko, S., Moss, W. F. & Smith, P. W. Decay rates for inverses of band matrices. Mathematics of Computation vol. 43 491–499 (1984) – 10.1090/s0025-5718-1984-0758197-9
  • Delabays, R., Coletta, T. & Jacquod, P. Multistability of phase-locking in equal-frequency Kuramoto models on planar graphs. Journal of Mathematical Physics vol. 58 (2017) – 10.1063/1.4978697
  • Dobson, I. Voltages Across an Area of a Network. IEEE Transactions on Power Systems vol. 27 993–1002 (2012) – 10.1109/tpwrs.2011.2168985
  • Dhople, S. V., Johnson, B. B., Dorfler, F. & Hamadeh, A. O. Synchronization of Nonlinear Circuits in Dynamic Electrical Networks With General Topologies. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 61 2677–2690 (2014) – 10.1109/tcsi.2014.2332250
  • De Persis, C., Weitenberg, E. R. A. & Dörfler, F. A power consensus algorithm for DC microgrids. Automatica vol. 89 364–375 (2018) – 10.1016/j.automatica.2017.12.026
  • Curtis, E. B. & Morrow, J. A. Inverse Problems for Electrical Networks. Series on Applied Mathematics (2000) doi:10.1142/4306 – 10.1142/4306
  • Delabays, R., Coletta, T. & Jacquod, P. Multistability of phase-locking and topological winding numbers in locally coupled Kuramoto models on single-loop networks. Journal of Mathematical Physics vol. 57 (2016) – 10.1063/1.4943296
  • Degeneff, R. C., Gutierrez, M. R., Salon, S. J., Burow, D. W. & Nevins, R. J. Kron’s reduction method applied to the time stepping finite element analysis of induction machines. IEEE Transactions on Energy Conversion vol. 10 669–674 (1995) – 10.1109/60.475837
  • tellegen, A general network theorem, with applications. Philips Res Rep (1952)
  • Tegling, E., Bamieh, B. & Gayme, D. F. The Price of Synchrony: Evaluating the Resistive Losses in Synchronizing Power Networks. IEEE Transactions on Control of Network Systems vol. 2 254–266 (2015) – 10.1109/tcns.2015.2399193
  • Stone, E. A. & Griffing, A. R. On the Fiedler vectors of graphs that arise from trees by Schur complementation of the Laplacian. Linear Algebra and its Applications vol. 431 1869–1880 (2009) – 10.1016/j.laa.2009.06.024
  • Smale, S. On the mathematical foundations of electrical circuit theory. Journal of Differential Geometry vol. 7 (1972) – 10.4310/jdg/1214430827
  • Electric Energy Systems. (CRC Press, 2017). doi:10.1201/9781420007275 – 10.1201/9781420007275
  • Godsil, C. & Royle, G. Algebraic Graph Theory. Graduate Texts in Mathematics (Springer New York, 2001). doi:10.1007/978-1-4613-0163-9 – 10.1007/978-1-4613-0163-9
  • Tucci, M., Floriduz, A., Riverso, S. & Ferrari-Trecate, G. Plug-and-play control of AC islanded microgrids with general topology. 2016 European Control Conference (ECC) 1493–1500 (2016) doi:10.1109/ecc.2016.7810501 – 10.1109/ecc.2016.7810501
  • Gilbert, J. R. Predicting Structure in Sparse Matrix Computations. SIAM Journal on Matrix Analysis and Applications vol. 15 62–79 (1994) – 10.1137/s0895479887139455
  • Trip, S., Bürger, M. & De Persis, C. An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages. Automatica vol. 64 240–253 (2016) – 10.1016/j.automatica.2015.11.021
  • Ghosh, A., Boyd, S. & Saberi, A. Minimizing Effective Resistance of a Graph. SIAM Review vol. 50 37–66 (2008) – 10.1137/050645452
  • Hao, H. & Barooah, P. Asymmetric control achieves size-independent stability margin in 1-D flocks. IEEE Conference on Decision and Control and European Control Conference 3458–3463 (2011) doi:10.1109/cdc.2011.6160339 – 10.1109/cdc.2011.6160339
  • Tyloo, M., Coletta, T. & Jacquod, Ph. Robustness of Synchrony in Complex Networks and Generalized Kirchhoff Indices. Physical Review Letters vol. 120 (2018) – 10.1103/physrevlett.120.084101
  • Hughes, B. D. Random Walks And Random Environments. (1995) doi:10.1093/oso/9780198537885.001.0001 – 10.1093/oso/9780198537885.001.0001
  • Groß, D., Arghir, C. & Dörfler, F. On the steady-state behavior of a nonlinear power system model. Automatica vol. 90 248–254 (2018)10.1016/j.automatica.2017.12.057
  • Gutman, I. & Xiao, W. Generalized inverse of the Laplacian matrix and some applications. Bulletin: Classe des sciences mathematiques et natturalles vol. 129 15–23 (2004) – 10.2298/bmat0429015g
  • van der Schaft, A. Modeling of physical network systems. Systems & Control Letters vol. 101 21–27 (2017)10.1016/j.sysconle.2015.08.013
  • van der schaft, The Flow Equations of Linear Resistive Electrical Networks (2017)
  • Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
  • Hughes, T. H. & Smith, M. C. On the Minimality and Uniqueness of the Bott–Duffin Realization Procedure. IEEE Transactions on Automatic Control vol. 59 1858–1873 (2014) – 10.1109/tac.2014.2312471
  • van der Schaft, A. Characterization and partial synthesis of the behavior of resistive circuits at their terminals. Systems & Control Letters vol. 59 423–428 (2010) – 10.1016/j.sysconle.2010.05.005
  • Jacquez, J. A. & Simon, C. P. Qualitative Theory of Compartmental Systems. SIAM Review vol. 35 43–79 (1993) – 10.1137/1035003
  • Verriest, E. I. & Willems, J. C. The behavior of linear time invariant RLC circuits. 49th IEEE Conference on Decision and Control (CDC) 7754–7758 (2010) doi:10.1109/cdc.2010.5717364 – 10.1109/cdc.2010.5717364
  • van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013)10.1137/110840091
  • vishnoi, $Lx=b$ , Laplacian solvers and their algorithmic applications. Theor Comput Sci (2013)
  • Versfeld, L. Remarks on star-mesh transformation of electrical networks. Electronics Letters vol. 6 597–599 (1970) – 10.1049/el:19700417
  • Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica vol. 35 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
  • Wagner, C., Kinzelbach, W. & Wittum, G. Schur-complement multigrid. Numerische Mathematik vol. 75 523–545 (1997) – 10.1007/s002110050251
  • Fan, Y. Schur complements and its applications to symmetric nonnegative and Z-matrices. Linear Algebra and its Applications vol. 353 289–307 (2002) – 10.1016/s0024-3795(02)00327-0
  • fagnani, Introduction to Averaging Dynamics Over Networks (2017)
  • Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013)10.1016/j.ejcon.2013.09.002
  • Fiedler, M. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal vol. 23 298–305 (1973) – 10.21136/cmj.1973.101168
  • Walter, G. G. & Contreras, M. Compartmental Modeling with Networks. Modeling and Simulation in Science, Engineering and Technology (Birkhäuser Boston, 1999). doi:10.1007/978-1-4612-1590-5 – 10.1007/978-1-4612-1590-5
  • fiedler, Inversion of bigraphs and connection with the Gaussian elimination. Graphs Hypergraphs and Block Systems (1976)
  • Wang, C., Bernstein, A., Le Boudec, J.-Y. & Paolone, M. Explicit Conditions on Existence and Uniqueness of Load-Flow Solutions in Distribution Networks. IEEE Transactions on Smart Grid vol. 9 953–962 (2018) – 10.1109/tsg.2016.2572060
  • Fiedler, M. Special Matrices and Their Applications in Numerical Mathematics. (Springer Netherlands, 1986). doi:10.1007/978-94-009-4335-3 – 10.1007/978-94-009-4335-3
  • Chung Wang & Tokad, Y. Polygon to Star Transformations. IRE Transactions on Circuit Theory vol. 8 489–491 (1961) – 10.1109/tct.1961.1086831
  • Fortunato, S. Community detection in graphs. Physics Reports vol. 486 75–174 (2010) – 10.1016/j.physrep.2009.11.002
  • Ward, J. B. Equivalent Circuits for Power-Flow Studies. Transactions of the American Institute of Electrical Engineers vol. 68 373–382 (1949) – 10.1109/t-aiee.1949.5059947
  • Foster, R. An Open Question. IRE Transactions on Circuit Theory vol. 8 175–175 (1961) – 10.1109/tct.1961.1086780
  • weinberg, Network Analysis and Synthesis (1975)
  • Altmann, M. Reinterpreting network measures for models of disease transmission. Social Networks vol. 15 1–17 (1993) – 10.1016/0378-8733(93)90019-h
  • Fouss, F., Pirotte, A., Renders, J. & Saerens, M. Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation. IEEE Transactions on Knowledge and Data Engineering vol. 19 355–369 (2007) – 10.1109/tkde.2007.46
  • Weston, J. D. Unification of linear network theory. Journal of the British Institution of Radio Engineers vol. 6 4–14 (1946) – 10.1049/jbire.1946.0002
  • Akagi, H., Watanabe, E. H. & Aredes, M. Instantaneous Power Theory and Applications to Power Conditioning. (2017) doi:10.1002/9781119307181 – 10.1002/9781119307181
  • pirani, On the smallest eigenvalue of grounded Laplacian matrices. IEEE Trans Autom Control (2016)
  • Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 42 73–82 (1995) – 10.1109/81.372847
  • perraudin, GSPBOX A toolbox for signal processing on graphs (2014)
  • machowski, Power System Dynamics (2008)
  • Perk, J. H. H. & Au-Yang, H. Yang–Baxter Equations. Encyclopedia of Mathematical Physics 465–473 (2006) doi:10.1016/b0-12-512666-2/00191-7 – 10.1016/b0-12-512666-2/00191-7
  • Machado, J. E., Grino, R., Barabanov, N., Ortega, R. & Polyak, B. On Existence of Equilibria of Multi-Port Linear AC Networks With Constant-Power Loads. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 64 2772–2782 (2017) – 10.1109/tcsi.2017.2697906
  • Paul, C. R. Modeling electromagnetic interference properties of printed circuit boards. IBM Journal of Research and Development vol. 33 33–50 (1989) – 10.1147/rd.331.0033
  • Lovisari, E., Garin, F. & Zampieri, S. Resistance-Based Performance Analysis of the Consensus Algorithm over Geometric Graphs. SIAM Journal on Control and Optimization vol. 51 3918–3945 (2013) – 10.1137/110857428
  • Pai, M. A. Energy Function Analysis for Power System Stability. (Springer US, 1989). doi:10.1007/978-1-4613-1635-0 – 10.1007/978-1-4613-1635-0
  • Lavei, J., Rantzer, A. & Low, S. Power flow optimization using positive quadratic programming*. IFAC Proceedings Volumes vol. 44 10481–10486 (2011) – 10.3182/20110828-6-it-1002.02588
  • Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
  • kundur, Power System Stability and Control (1994)
  • Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE vol. 95 215–233 (2007) – 10.1109/jproc.2006.887293
  • mohar, The Laplacian spectrum of graphs. Graph Theory Combinatorics and Applications (1991)
  • porter, Communities in networks. Notices AMS (2009)
  • Rantzer, A. & Bernhardsson, B. Control of convex-monotone systems. 53rd IEEE Conference on Decision and Control 2378–2383 (2014) doi:10.1109/cdc.2014.7039751 – 10.1109/cdc.2014.7039751
  • Poolla, B. K., Bolognani, S. & Dorfler, F. Optimal Placement of Virtual Inertia in Power Grids. IEEE Transactions on Automatic Control vol. 62 6209–6220 (2017) – 10.1109/tac.2017.2703302
  • Meyer, C. D. Stochastic Complementation, Uncoupling Markov Chains, and the Theory of Nearly Reducible Systems. SIAM Review vol. 31 240–272 (1989) – 10.1137/1031050
  • meyer, Matrix Analysis and Applied Linear Algebra (2001)
  • McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. USING CIRCUIT THEORY TO MODEL CONNECTIVITY IN ECOLOGY, EVOLUTION, AND CONSERVATION. Ecology vol. 89 2712–2724 (2008) – 10.1890/07-1861.1
  • Merris, R. Laplacian matrices of graphs: a survey. Linear Algebra and its Applications vols 197–198 143–176 (1994) – 10.1016/0024-3795(94)90486-3
  • Estimation on graphs from relative measurements. IEEE Control Systems vol. 27 57–74 (2007) – 10.1109/mcs.2007.384125
  • Bazrafshan, M. & Gatsis, N. Convergence of the Z-Bus Method for Three-Phase Distribution Load-Flow with ZIP Loads. IEEE Transactions on Power Systems vol. 33 153–165 (2018) – 10.1109/tpwrs.2017.2703835
  • Bedrosian, S. Converse of the Star-Mesh Transformation. IRE Transactions on Circuit Theory vol. 8 491–493 (1961) – 10.1109/tct.1961.1086832
  • Belk, J. A., Inam, W., Perreault, D. J. & Turitsyn, K. Stability and control of ad hoc dc microgrids. 2016 IEEE 55th Conference on Decision and Control (CDC) 3271–3278 (2016) doi:10.1109/cdc.2016.7798761 – 10.1109/cdc.2016.7798761
  • Benzi, M., Golub, G. H. & Liesen, J. Numerical solution of saddle point problems. Acta Numerica vol. 14 1–137 (2005) – 10.1017/s0962492904000212
  • benzi, Decay bounds and $o(n)$ algorithms for approximating functions of sparse matrices. Electron Trans Numer Anal (2007)
  • simpson-porco, A theory of solvability for lossless power flow equations—Part I: Fixed-point power flow. IEEE Trans Control Netw Syst (0)
  • biggs, Algebraic Graph Theory (1994)
  • jeltsema, Budeanu’s concept of reactive and distortion power revisited. Proc Int School Nonsinusoidal Currents Compensation (2015)
  • Shew, D. W. C. XXVII. Generalized star and mesh transformations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science vol. 38 267–275 (1947) – 10.1080/14786444708521594
  • Biggs, N. Algebraic Potential Theory on Graphs. Bulletin of the London Mathematical Society vol. 29 641–682 (1997) – 10.1112/s0024609397003305
  • Janezic, D., Milicevic, A., Nikolic, S. & Trinajstic, N. Graph-Theoretical Matrices in Chemistry. (2015) doi:10.1201/b18389 – 10.1201/b18389
  • Bini, D. A. & Meini, B. The cyclic reduction algorithm: from Poisson equation to stochastic processes and beyond. Numerical Algorithms vol. 51 23–60 (2008) – 10.1007/s11075-008-9253-0
  • Jeltsema, D. & Scherpen, J. M. A. A dual relation between port-Hamiltonian systems and the Brayton–Moser equations for nonlinear switched RLC circuits. Automatica vol. 39 969–979 (2003)10.1016/s0005-1098(03)00070-0
  • simpson-porco, A theory of solvability for lossless power flow equations—Part II: Conditions for radial networks. IEEE Trans Control Netw Syst (0)
  • Bollobás, B. Modern Graph Theory. Graduate Texts in Mathematics (Springer New York, 1998). doi:10.1007/978-1-4612-0619-4 – 10.1007/978-1-4612-0619-4
  • Jeltsema, D., Ortega, R. & Scherpen, J. M. A. On passivity and power-balance inequalities of nonlinear rlc circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 50 1174–1179 (2003) – 10.1109/tcsi.2003.816332
  • Rose, D. J., Tarjan, R. E. & Lueker, G. S. Algorithmic Aspects of Vertex Elimination on Graphs. SIAM Journal on Computing vol. 5 266–283 (1976) – 10.1137/0205021
  • Rommes, J. & Schilders, W. H. A. Efficient Methods for Large Resistor Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 29 28–39 (2010) – 10.1109/tcad.2009.2034402
  • rudin, Principles of Mathematical Analysis (1976)
  • jafarpour, Synchronization of Kuramoto oscillators via cutset projections. IEEE Trans Autom Control (0)
  • Rosen, A. A new network theorem. Journal of the Institution of Electrical Engineers vol. 62 916–918 (1924) – 10.1049/jiee-1.1924.0120
  • Simpson-Porco, J. W., Dörfler, F. & Bullo, F. Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica vol. 49 2603–2611 (2013) – 10.1016/j.automatica.2013.05.018
  • kron, Tensor Analysis of Networks (1939)
  • Simpson-Porco, J. W., Dörfler, F. & Bullo, F. Voltage collapse in complex power grids. Nature Communications vol. 7 (2016) – 10.1038/ncomms10790
  • Simpson-Porco, J. W., Dorfler, F. & Bullo, F. Voltage Stabilization in Microgrids via Quadratic Droop Control. IEEE Transactions on Automatic Control vol. 62 1239–1253 (2017) – 10.1109/tac.2016.2585094
  • Simpson-Porco, J. W. & Monshizadeh, N. Model-free wide-area monitoring of power grids via cutset voltages. 2016 IEEE 55th Conference on Decision and Control (CDC) 7508–7513 (2016) doi:10.1109/cdc.2016.7799429 – 10.1109/cdc.2016.7799429
  • Multidomain modeling of nonlinear networks and systems. IEEE Control Systems vol. 29 28–59 (2009) – 10.1109/mcs.2009.932927
  • kennelly, The equivalence of triangles and three-pointed stars in conducting networks. Electr World Eng (1899)
  • Kirchhoff, G. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der Physik vol. 148 497–508 (1847) – 10.1002/andp.18471481202
  • Klein, D. J. & Randić, M. Resistance distance. Journal of Mathematical Chemistry vol. 12 81–95 (1993) – 10.1007/bf01164627