On the steady-state behavior of a nonlinear power system model
Authors
Dominic Groß, Catalin Arghir, Florian Dörfler
Abstract
In this article, we consider a dynamic model of a three-phase power system including nonlinear generator dynamics, transmission line dynamics, and static nonlinear loads. We define a synchronous steady-state behavior which corresponds to the desired nominal operating point of a power system and obtain necessary and sufficient conditions on the control inputs, load model, and transmission network, under which the power system admits this steady-state behavior. We arrive at a separation between the steady-state conditions of the transmission network and generators, which allows us to recover the steady-state of the entire power system solely from a prescribed operating point of the transmission network. Moreover, we constructively obtain necessary and sufficient steady-state conditions based on network balance equations typically encountered in power flow analysis. Our analysis results in several necessary conditions that any power system control strategy needs to satisfy.
Keywords
Power system dynamics; Steady-state behavior; Port-Hamiltonian systems
Citation
- Journal: Automatica
- Year: 2018
- Volume: 90
- Issue:
- Pages: 248–254
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2017.12.057
BibTeX
@article{Gro__2018,
title={{On the steady-state behavior of a nonlinear power system model}},
volume={90},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2017.12.057},
journal={Automatica},
publisher={Elsevier BV},
author={Groß, Dominic and Arghir, Catalin and Dörfler, Florian},
year={2018},
pages={248--254}
}
References
- Barabanov, N., Schiffer, J., Ortega, R. & Efimov, D. Conditions for Almost Global Attractivity of a Synchronous Generator Connected to an Infinite Bus. IEEE Transactions on Automatic Control vol. 62 4905–4916 (2017) – 10.1109/tac.2017.2671026
- Caliskan, S. Y. & Tabuada, P. Compositional Transient Stability Analysis of Multimachine Power Networks. IEEE Transactions on Control of Network Systems vol. 1 4–14 (2014) – 10.1109/tcns.2014.2304868
- Caliskan, S. Y. & Tabuada, P. Uses and abuses of the swing equation model. 2015 54th IEEE Conference on Decision and Control (CDC) 6662–6667 (2015) doi:10.1109/cdc.2015.7403268 – 10.1109/cdc.2015.7403268
- Caliskan, S. Y. & Tabuada, P. Correction to “Compositional Transient Stability Analysis of Multimachine Power Networks”. IEEE Transactions on Control of Network Systems vol. 4 676–677 (2017) – 10.1109/tcns.2016.2524986
- Clarke, (1943)
- Dib, W., Barabanov, A. E., Ortega, R. & Lamnabhi-Lagarrigue, F. An Explicit Solution of the Power Balance Equations of Structure Preserving Power System Models. IEEE Transactions on Power Systems vol. 24 759–765 (2009) – 10.1109/tpwrs.2008.2012191
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Kundur, (1994)
- Monshizadeh, P., De Persis, C., Monshizadeh, N. & van der Schaft, A. J. Nonlinear analysis of an improved swing equation. 2016 IEEE 55th Conference on Decision and Control (CDC) 4116–4121 (2016) doi:10.1109/cdc.2016.7798893 – 10.1109/cdc.2016.7798893
- Natarajan, V. & Weiss, G. Almost global asymptotic stability of a constant field current synchronous machine connected to an infinite bus. 53rd IEEE Conference on Decision and Control 3272–3279 (2014) doi:10.1109/cdc.2014.7039895 – 10.1109/cdc.2014.7039895
- Sauer, (1998)
- Stegink, T., De Persis, C. & van der Schaft, A. Optimal power dispatch in networks of high-dimensional models of synchronous machines. 2016 IEEE 55th Conference on Decision and Control (CDC) 4110–4115 (2016) doi:10.1109/cdc.2016.7798892 – 10.1109/cdc.2016.7798892
- van der Schaft, A. & Stegink, T. Perspectives in modeling for control of power networks. Annual Reviews in Control vol. 41 119–132 (2016) – 10.1016/j.arcontrol.2016.04.017