Design of a stand-alone hybrid dispersed generation network unified by passivity-based control
Authors
Rutvika Manohar, Takashi Hikihara
Abstract
In this article, we propose a model for a stand-alone hybrid distributed generation system. In this model, the input sources are distributed DC sources like solar panels or batteries. The idea behind this network framework is to introduce a hybrid DC/AC network, feasible for small and remotely located areas with stand-alone DC grids, in the vicinity of larger towns requiring a functional AC connection. The behaviour of the system in the steady state is analysed, and the network is mathematically represented with port-controlled Hamiltonian modelling. Stabilization to the desired voltage, both AC as well as DC, is attained with nonlinear passivity-based control taking into consideration not only the energy characteristics but also the inherent physical structure.
Citation
- Journal: Royal Society Open Science
- Year: 2024
- Volume: 11
- Issue: 7
- Pages:
- Publisher: The Royal Society
- DOI: 10.1098/rsos.230458
BibTeX
@article{Manohar_2024,
title={{Design of a stand-alone hybrid dispersed generation network unified by passivity-based control}},
volume={11},
ISSN={2054-5703},
DOI={10.1098/rsos.230458},
number={7},
journal={Royal Society Open Science},
publisher={The Royal Society},
author={Manohar, Rutvika and Hikihara, Takashi},
year={2024}
}
References
- Pepermans, G., Driesen, J., Haeseldonckx, D., Belmans, R. & D’haeseleer, W. Distributed generation: definition, benefits and issues. Energy Policy 33, 787–798 (2005) – 10.1016/j.enpol.2003.10.004
- Ackermann, T., Andersson, G. & Söder, L. Distributed generation: a definition. Electric Power Systems Research 57, 195–204 (2001) – 10.1016/s0378-7796(01)00101-8
- El-Khattam, W. & Salama, M. M. A. Distributed generation technologies, definitions and benefits. Electric Power Systems Research 71, 119–128 (2004) – 10.1016/j.epsr.2004.01.006
- Mitra I, Distributed generation and microgrids for small island electrification in developing countries: a review. SESI (2008)
- Bhoyar, R. & Bharatkar, S. Potential of MicroSources, Renewable Energy sources and Application of Microgrids in Rural areas of Maharashtra State India. Energy Procedia 14, 2012–2018 (2012) – 10.1016/j.egypro.2011.12.1202
- Beck, F. & Martinot, E. Renewable Energy Policies and Barriers. Encyclopedia of Energy 365–383 (2004) doi:10.1016/b0-12-176480-x/00488-5 – 10.1016/b0-12-176480-x/00488-5
- Nair, N.-K. C. & Zhang, L. SmartGrid: Future networks for New Zealand power systems incorporating distributed generation. Energy Policy 37, 3418–3427 (2009) – 10.1016/j.enpol.2009.03.025
- Banerjee, B. & Islam, S. M. Reliability based optimum location of distributed generation. International Journal of Electrical Power & Energy Systems 33, 1470–1478 (2011) – 10.1016/j.ijepes.2011.06.029
- Chauhan, A. & Saini, R. P. Renewable energy based off-grid rural electrification in Uttarakhand state of India: Technology options, modelling method, barriers and recommendations. Renewable and Sustainable Energy Reviews 51, 662–681 (2015) – 10.1016/j.rser.2015.06.043
- Castellanos, J. G., Walker, M., Poggio, D., Pourkashanian, M. & Nimmo, W. Modelling an off-grid integrated renewable energy system for rural electrification in India using photovoltaics and anaerobic digestion. Renewable Energy 74, 390–398 (2015) – 10.1016/j.renene.2014.08.055
- Agarwal, N., Kumar, A. & Varun. Optimization of grid independent hybrid PV–diesel–battery system for power generation in remote villages of Uttar Pradesh, India. Energy for Sustainable Development 17, 210–219 (2013) – 10.1016/j.esd.2013.02.002
- Sen, R. & Bhattacharyya, S. C. Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renewable Energy 62, 388–398 (2014) – 10.1016/j.renene.2013.07.028
- Jia, L., Zhu, Y. & Wang, Y. Architecture design for new AC-DC hybrid micro-grid. 2015 IEEE First International Conference on DC Microgrids (ICDCM) 113–118 (2015) doi:10.1109/icdcm.2015.7152020 – 10.1109/icdcm.2015.7152020
- Nejabatkhah, F. & Li, Y. W. Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Trans. Power Electron. 30, 7072–7089 (2015) – 10.1109/tpel.2014.2384999
- Loh, P. C., Li, D., Chai, Y. K. & Blaabjerg, F. Autonomous Control of Interlinking Converter With Energy Storage in Hybrid AC–DC Microgrid. IEEE Trans. on Ind. Applicat. 49, 1374–1382 (2013) – 10.1109/tia.2013.2252319
- Nasir, M., Khan, H. A., Hussain, A., Mateen, L. & Zaffar, N. A. Solar PV-Based Scalable DC Microgrid for Rural Electrification in Developing Regions. IEEE Trans. Sustain. Energy 9, 390–399 (2018) – 10.1109/tste.2017.2736160
- Khodayar, M. E. Rural electrification and expansion planning of off-grid microgrids. The Electricity Journal 30, 68–74 (2017) – 10.1016/j.tej.2017.04.004
- Popov, V.-M. Hyperstability of Control Systems. (Springer Berlin Heidelberg, 1973). doi:10.1007/978-3-642-65654-5 – 10.1007/978-3-642-65654-5
- Ortega R, Passivity-based control of Euler-Lagrange systems: mechanical, electrical and electromechanical applications (2013)
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Passivity-Based Control for DC-Microgrids with Constant Power Terminals in Island Mode Operation. Rev. Fac. Ing. Univ. Antioquia 32–39 (2018) doi:10.17533/udea.redin.n86a05 – 10.17533/udea.redin.n86a05
- Hassan, M. A. & He, Y. Constant Power Load Stabilization in DC Microgrid Systems Using Passivity-Based Control With Nonlinear Disturbance Observer. IEEE Access 8, 92393–92406 (2020) – 10.1109/access.2020.2992780
- Hassan, M., Su, C.-L., Chen, F.-Z. & Lo, K.-Y. Adaptive Passivity-Based Control of a DC–DC Boost Power Converter Supplying Constant Power and Constant Voltage Loads. IEEE Trans. Ind. Electron. 69, 6204–6214 (2022) – 10.1109/tie.2021.3086723
- He, W., Namazi, M. M., Koofigar, H. R., Amirian, M. A. & Blaabjerg, F. Stabilization of DC–DC buck converter with unknown constant power load via passivity‐based control plus proportion‐integration. IET Power Electronics 14, 2597–2609 (2021) – 10.1049/pel2.12205
- Hassan, M. A. et al. Adaptive Passivity-Based Control of dc–dc Buck Power Converter With Constant Power Load in DC Microgrid Systems. IEEE J. Emerg. Sel. Topics Power Electron. 7, 2029–2040 (2019) – 10.1109/jestpe.2018.2874449
- Samanta S, IEEE 7th Int. Conf. for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2022 (2022)
- Gui, Y., Wei, B., Li, M., Guerrero, J. M. & Vasquez, J. C. Passivity-based coordinated control for islanded AC microgrid. Applied Energy 229, 551–561 (2018) – 10.1016/j.apenergy.2018.07.115
- Manohar, R. & Hikihara, T. Phase synchronization of autonomous AC grid system with passivity‐based control. Circuit Theory & Apps 48, 906–918 (2020) – 10.1002/cta.2760
- Amirkhan, S., Radmehr, M., Rezanejad, M. & Khormali, S. An improved passivity-based control strategy for providing an accurate coordination in a AC/DC hybrid microgrid. Journal of the Franklin Institute 356, 6875–6898 (2019) – 10.1016/j.jfranklin.2019.03.026
- Azimi, S. M. & Hamzeh, M. Adaptive Interconnection and Damping Assignment Passivity-Based Control of Interlinking Converter in Hybrid AC/DC Grids. IEEE Systems Journal 14, 4718–4725 (2020) – 10.1109/jsyst.2019.2961314
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- Manohar, R. & Hikihara, T. Dynamic behaviour of a ring coupled boost converter system with passivity-based control. NOLTA 11, 109–122 (2020) – 10.1587/nolta.11.109
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes 25, 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- Pósfai M, Network science (2016)
- Pagani, G. A. & Aiello, M. The Power Grid as a complex network: A survey. Physica A: Statistical Mechanics and its Applications 392, 2688–2700 (2013) – 10.1016/j.physa.2013.01.023
- Khalil HK, Nonlinear systems, vol. 3 (1996)
- Isidori, A. The zero dynamics of a nonlinear system: From the origin to the latest progresses of a long successful story. European Journal of Control 19, 369–378 (2013) – 10.1016/j.ejcon.2013.05.014
- Zangeneh, A., Jadid, S. & Rahimi-Kian, A. Uncertainty based distributed generation expansion planning in electricity markets. Electr Eng 91, 369–382 (2010) – 10.1007/s00202-010-0146-6
- Mao Y, Proc. 29th Chinese Control Conf., Beijing, China, 29–31 July 2010 (2010)
- Liu, C., Xu, Q., Chen, Z. & Bak, C. L. Vulnerability evaluation of power system integrated with large-scale distributed generation based on complex network theory. 2012 47th International Universities Power Engineering Conference (UPEC) 1–5 (2012) doi:10.1109/upec.2012.6398605 – 10.1109/upec.2012.6398605
- Cuadra, L., Salcedo-Sanz, S., Del Ser, J., Jiménez-Fernández, S. & Geem, Z. A Critical Review of Robustness in Power Grids Using Complex Networks Concepts. Energies 8, 9211–9265 (2015) – 10.3390/en8099211
- Ki-Chul Kim, Ortega, R., Charara, A. & Vilain, J.-P. Theoretical and experimental comparison of two nonlinear controllers for current-fed induction motors. IEEE Trans. Contr. Syst. Technol. 5, 338–348 (1997) – 10.1109/87.572130
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- Hilairet, M. et al. A passivity-based controller for coordination of converters in a fuel cell system. Control Engineering Practice 21, 1097–1109 (2013) – 10.1016/j.conengprac.2013.04.003