Phase synchronization of autonomous AC grid system with passivity‐based control
Authors
Rutvika Manohar, Takashi Hikihara
Abstract
This paper discusses a ring‐coupled buck‐type inverter system to harness energy from direct current (DC) sources of electricity. The DC‐DC buck converter circuit is modified with an H‐bridge to convert the DC input voltage to a usable alternating current (AC) output voltage. Passivity‐based control (PBC) with port‐controlled Hamiltonian modelling (PCHM) is a method where the system is controlled by considering not only the energy properties of the system but also the inherent physical structure. PBC is applied to achieve stabilization of the AC output voltage to a desired amplitude and frequency. Unsynchronized output voltages in terms of phase angle or frequency can cause detrimental effects on the system. Phase‐locked loop (PLL) is employed in the ring structure to maintain synchronization of the AC output voltage of all inverter units in the ring‐coupled system.
Citation
- Journal: International Journal of Circuit Theory and Applications
- Year: 2020
- Volume: 48
- Issue: 6
- Pages: 906–918
- Publisher: Wiley
- DOI: 10.1002/cta.2760
BibTeX
@article{Manohar_2020,
title={{Phase synchronization of autonomous AC grid system with passivity‐based control}},
volume={48},
ISSN={1097-007X},
DOI={10.1002/cta.2760},
number={6},
journal={International Journal of Circuit Theory and Applications},
publisher={Wiley},
author={Manohar, Rutvika and Hikihara, Takashi},
year={2020},
pages={906--918}
}
References
- Ackermann, T., Andersson, G. & Söder, L. Distributed generation: a definition. Electric Power Systems Research 57, 195–204 (2001) – 10.1016/s0378-7796(01)00101-8
- Adefarati, T. & Bansal, R. C. Integration of renewable distributed generators into the distribution system: a review. IET Renewable Power Gen 10, 873–884 (2016) – 10.1049/iet-rpg.2015.0378
- Castillo, A. & Gayme, D. F. Grid-scale energy storage applications in renewable energy integration: A survey. Energy Conversion and Management 87, 885–894 (2014) – 10.1016/j.enconman.2014.07.063
- Zhong, Q. & Hornik, T. Control of Power Inverters in Renewable Energy and Smart Grid Integration. (2012) doi:10.1002/9781118481806 – 10.1002/9781118481806
- Akikur, R. K., Saidur, R., Ping, H. W. & Ullah, K. R. Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review. Renewable and Sustainable Energy Reviews 27, 738–752 (2013) – 10.1016/j.rser.2013.06.043
- Goel, S. & Sharma, R. Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review. Renewable and Sustainable Energy Reviews 78, 1378–1389 (2017) – 10.1016/j.rser.2017.05.200
- Patterson, M., Macia, N. F. & Kannan, A. M. Hybrid Microgrid Model Based on Solar Photovoltaic Battery Fuel Cell System for Intermittent Load Applications. IEEE Trans. Energy Convers. 30, 359–366 (2015) – 10.1109/tec.2014.2352554
- Anees AS, Grid integration of renewable energy sources: Challenges, issues and possible solutions (2012)
- Acharjee, P. Strategy and implementation of Smart Grids in India. Energy Strategy Reviews 1, 193–204 (2013) – 10.1016/j.esr.2012.05.003
- Loka, P. et al. A case study for micro-grid PV: lessons learned from a rural electrification project in India. Prog. Photovolt: Res. Appl. 22, 733–743 (2013) – 10.1002/pip.2429
- Kanase-Patil, A. B., Saini, R. P. & Sharma, M. P. Integrated renewable energy systems for off grid rural electrification of remote area. Renewable Energy 35, 1342–1349 (2010) – 10.1016/j.renene.2009.10.005
- Kassakian JG, Principles of power electronics. Graphis (2000)
- Miladi, Y., Feki, M. & Derbel, N. Optimal control of a single‐phase
H‐bridge DC–AC inverter. Circuit Theory & Apps 44, 744–758 (2015) – 10.1002/cta.2104 - Tofighi, A. & Kalantar, M. Power management of PV/battery hybrid power source via passivity-based control. Renewable Energy 36, 2440–2450 (2011) – 10.1016/j.renene.2011.01.029
- Jie Bao PL, Process Control‐ The Passive Systems Approach (2007)
- Ortega R, Passivity‐based control of Euler‐Lagrange systems: mechanical, electrical and electromechanical applications (2013)
- Ortega R, Energy‐shaping of port‐controlled Hamiltonian systems by interconnection, 2 (1999)
- Batlle, C., Dòria‐Cerezo, A. & Fossas, E. Bidirectional power flow control of a power converter using passive Hamiltonian techniques. Circuit Theory & Apps 36, 769–788 (2007) – 10.1002/cta.459
- Sira‐Ramirez H, Passivity‐based controllers for the stabilization of DC‐to‐DC power converters, 4. IEEE (1995)
- Zhu, M. & Luo, F. L. Transient analysis of multi‐state dc–dc converters using system energy characteristics. Circuit Theory & Apps 36, 327–344 (2007) – 10.1002/cta.448
- HIKIHARA, T. & MURAKAMI, Y. Regulation of Parallel Converters with Respect to Stored Energy and Passivity Characteristics. IEICE Trans. Fundamentals E94-A, 1010–1014 (2011) – 10.1587/transfun.e94.a.1010
- Jaalam, N., Rahim, N. A., Bakar, A. H. A., Tan, C. & Haidar, A. M. A. A comprehensive review of synchronization methods for grid-connected converters of renewable energy source. Renewable and Sustainable Energy Reviews 59, 1471–1481 (2016) – 10.1016/j.rser.2016.01.066
- Blaabjerg, F., Teodorescu, R., Liserre, M. & Timbus, A. V. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Trans. Ind. Electron. 53, 1398–1409 (2006) – 10.1109/tie.2006.881997
- Guan-Chyun Hsieh & Hung, J. C. Phase-locked loop techniques. A survey. IEEE Trans. Ind. Electron. 43, 609–615 (1996) – 10.1109/41.544547
- Sira‐Ramírez H, Control design techniques in power electronics devices (2006)
- Best RE, Phase locked loops: design, simulation, and applications (2007)
- Karimi‐Ghartemani, M. Enhanced Phase‐Locked Loop Structures for Power and Energy Applications. (2014) doi:10.1002/9781118795187 – 10.1002/9781118795187
- Van Der Schaft A, Port‐Hamiltonian systems: network modeling and control of nonlinear physical systems (2004)
- Khalil HK, Noninear systems. Prentice‐Hall, New Jersey (1996)