Dead-zone compensation via passivity-based control for a class of mechanical systems
Authors
Carmen Chan-Zheng, Pablo Borja, Jacquelien M.A. Scherpen
Abstract
This manuscript introduces a passivity-based control methodology for fully-actuated mechanical systems with symmetric or asymmetric dead-zones. To this end, we find a smooth approximation of the inverse of the function that describes such a nonlinearity. Then, we propose an energy and damping injection approach — based on the PI-PBC technique — that compensates for the dead-zone. Moreover, we provide an analysis of the performance of the proposed controller near the equilibrium. We conclude this paper by experimentally validating the results on a two degrees-of-freedom planar manipulator.
Keywords
damping injection; energy shaping; passivity; pid; tuning
Citation
- Journal: IFAC-PapersOnLine
- Year: 2023
- Volume: 56
- Issue: 1
- Pages: 319–324
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2023.02.054
- Note: 12th IFAC Symposium on Nonlinear Control Systems NOLCOS 2022- Canberra, Australia, January 4-6, 2023
BibTeX
@article{Chan_Zheng_2023,
title={{Dead-zone compensation via passivity-based control for a class of mechanical systems}},
volume={56},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2023.02.054},
number={1},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Chan-Zheng, Carmen and Borja, Pablo and Scherpen, Jacquelien M.A.},
year={2023},
pages={319--324}
}
References
- Benzi, M. & Simoncini, V. On the eigenvalues of a class of saddle point matrices. Numerische Mathematik vol. 103 173–196 (2006) – 10.1007/s00211-006-0679-9
- Betancor-Martín, Deadzone compensation in motion control systems using model reference direct inverse control. (2014)
- Borja, P., Ortega, R. & Scherpen, J. M. A. New Results on Stabilization of Port-Hamiltonian Systems via PID Passivity-Based Control. IEEE Transactions on Automatic Control vol. 66 625–636 (2021) – 10.1109/tac.2020.2986731
- Chan-Zheng, Tuning rules for a class of passivity-based controllers for mechanical systems. (2021)
- Chan-Zheng, Tuning of passivity-based controllers for mechanical systems. arXiv preprint (2022)
- Chan-Zheng, Tuning rules for passivity-based integral control for a class of mechanical systems. IEEE Control Systems Letters (2022)
- Cho, H. & Bai, E.-W. Convergence results for an adaptive dead zone inverse. International Journal of Adaptive Control and Signal Processing vol. 12 451–466 (1998) – 10.1002/(sici)1099-1115(199808)12:5<451::aid-acs504>3.0.co;2-r
- Dirksz, D. A. & Scherpen, J. M. A. Power-based control: Canonical coordinate transformations, integral and adaptive control. Automatica vol. 48 1045–1056 (2012) – 10.1016/j.automatica.2012.03.003
- Duindam, (2009)
- Horn, (2012)
- Jung, D. & Jeon, J. Synchronous Control of 2-D.O.F Master-Slave Manipulators Using Actuators With Asymmetric Nonlinear Dead-Zone Characteristics. IEEE Access vol. 10 22782–22794 (2022) – 10.1109/access.2022.3153839
- Khalil, (2002)
- Mizumoto, Control of a flexible arm with input dead zone by a passivity based adaptive output feedback. (2012)
- Na, (2018)
- Ortega, (2013)
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters vol. 61 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Ortega, (2021)
- Rubio, J. de J., Zamudio, Z., Pacheco, J. & Mújica Vargas, D. Proportional Derivative Control with Inverse Dead-Zone for Pendulum Systems. Mathematical Problems in Engineering vol. 2013 1–9 (2013) – 10.1155/2013/173051
- Selmic, R. R. & Lewis, F. L. Deadzone compensation in motion control systems using neural networks. IEEE Transactions on Automatic Control vol. 45 602–613 (2000) – 10.1109/9.847098
- van der Schaft, (2017)
- Woo, Deadzone compensation in motion control systems using adaptive fuzzy logic control. (1997)