Control of islanded microgrids considering power converter dynamics
Authors
Sofía Avila-Becerril, Gerardo Espinosa-Pérez
Abstract
In this paper, the control problem of Islanded Microgrids is approached. A controller scheme that considers the necessity to assure the generation of grid-forming nodes as well as the proper operation of grid-following nodes is proposed. The main feature of the contribution is the explicit inclusion of the dynamic of the power converters existing in this kind of networks making possible the evaluation of the system performance under sudden and fast changes in the operating conditions typically found in these applications. The scheme uses only the measurement of local variables and guarantees that both voltages and currents of the network achieve the values required to satisfy a prescribed power balance imposed by the loads. The design of the proposed controller is carried out by exploiting a Port-Controlled Hamiltonian representation of the system and applying the Passivity-based Controller design methodology. The stability properties of the closed-loop system are formally proved and its usefulness is illustrated via numerical simulations.
Citation
- Journal: International Journal of Control
- Year: 2021
- Volume: 94
- Issue: 9
- Pages: 2520–2530
- Publisher: Informa UK Limited
- DOI: 10.1080/00207179.2020.1713402
BibTeX
@article{Avila_Becerril_2020,
title={{Control of islanded microgrids considering power converter dynamics}},
volume={94},
ISSN={1366-5820},
DOI={10.1080/00207179.2020.1713402},
number={9},
journal={International Journal of Control},
publisher={Informa UK Limited},
author={Avila-Becerril, Sofía and Espinosa-Pérez, Gerardo},
year={2020},
pages={2520--2530}
}
References
- Agundis-Tinajero, G. et al. Power flow modeling of islanded AC microgrids with hierarchical control. International Journal of Electrical Power & Energy Systems 105, 28–36 (2019) – 10.1016/j.ijepes.2018.08.002
- Avila-Becerril, S., Espinosa-Perez, G. & Canseco-Rodal, R. On the control of power flows in microgrids. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 3252–3257 (2017) doi:10.1109/cdc.2017.8264136 – 10.1109/cdc.2017.8264136
- Avila-Becerril, S., Espinosa-Pérez, G. & Fernandez, P. Dynamic Characterization of Typical Electrical Circuits via Structural Properties. Mathematical Problems in Engineering 2016, 1–13 (2016) – 10.1155/2016/7870462
- Barklund, E., Pogaku, N., Prodanovic, M., Hernandez-Aramburo, C. & Green, T. C. Energy Management in Autonomous Microgrid Using Stability-Constrained Droop Control of Inverters. IEEE Trans. Power Electron. 23, 2346–2352 (2008) – 10.1109/tpel.2008.2001910
- Bollobás, B. Modern Graph Theory. Graduate Texts in Mathematics (Springer New York, 1998). doi:10.1007/978-1-4612-0619-4 – 10.1007/978-1-4612-0619-4
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quart. Appl. Math. 22, 1–33 (1964) – 10.1090/qam/169746
- Chen, Y., Damm, G., Benchaib, A. & Lamnabhi-Lagarrigue, F. Multi-time-scale stability analysis and design conditions of a VSC terminal with DC voltage droop control for HVDC networks. 53rd IEEE Conference on Decision and Control 3266–3271 (2014) doi:10.1109/cdc.2014.7039894 – 10.1109/cdc.2014.7039894
- Cisneros, R. et al. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters. Control Engineering Practice 43, 109–119 (2015) – 10.1016/j.conengprac.2015.07.002
- Efimov, D., Schiffer, J. & Ortega, R. Robustness of delayed multistable systems with application to droop-controlled inverter-based microgrids. International Journal of Control 89, 909–918 (2016) – 10.1080/00207179.2015.1104555
- Farhangi, H. The path of the smart grid. IEEE Power and Energy Mag. 8, 18–28 (2010) – 10.1109/mpe.2009.934876
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control 19, 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Guerrero, J. M., Chandorkar, M., Lee, T.-L. & Loh, P. C. Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control. IEEE Trans. Ind. Electron. 60, 1254–1262 (2013) – 10.1109/tie.2012.2194969
- Han, H. et al. Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids. IEEE Trans. Smart Grid 7, 200–215 (2016) – 10.1109/tsg.2015.2434849
- Incremona, G. P., Cucuzzella, M. & Ferrara, A. Adaptive suboptimal second-order sliding mode control for microgrids. International Journal of Control 89, 1849–1867 (2016) – 10.1080/00207179.2016.1138241
- Konstantopoulos, G. C., Zhong, Q.-C., Ren, B. & Krstic, M. Stability analysis and fail-safe operation of inverters operated in parallel. International Journal of Control 88, 1410–1421 (2015) – 10.1080/00207179.2015.1041553
- Machado, J. E., Grino, R., Barabanov, N., Ortega, R. & Polyak, B. On Existence of Equilibria of Multi-Port Linear AC Networks With Constant-Power Loads. IEEE Trans. Circuits Syst. I 64, 2772–2782 (2017) – 10.1109/tcsi.2017.2697906
- Machowski J., Power system dynamics and stability (1997)
- Monshizadeh, N., De Persis, C., van der Schaft, A. J. & Scherpen, J. M. A. A Novel Reduced Model for Electrical Networks With Constant Power Loads. IEEE Trans. Automat. Contr. 63, 1288–1299 (2018) – 10.1109/tac.2017.2747763
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Sauer, P. W., Pai, M. A. & Chow, J. H. Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox 2e. (2017) doi:10.1002/9781119355755 – 10.1002/9781119355755
- Schiffer, J., Ortega, R., Astolfi, A., Raisch, J. & Sezi, T. Conditions for stability of droop-controlled inverter-based microgrids. Automatica 50, 2457–2469 (2014) – 10.1016/j.automatica.2014.08.009
- Schiffer, J. et al. A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources. Automatica 74, 135–150 (2016) – 10.1016/j.automatica.2016.07.036
- Simpson-Porco, J. W., Dörfler, F. & Bullo, F. Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica 49, 2603–2611 (2013) – 10.1016/j.automatica.2013.05.018
- Stegink, T., De Persis, C. & van der Schaft, A. A port-Hamiltonian approach to optimal frequency regulation in power grids. 2015 54th IEEE Conference on Decision and Control (CDC) 3224–3229 (2015) doi:10.1109/cdc.2015.7402703 – 10.1109/cdc.2015.7402703
- Cutsem, T. & Vournas, C. Voltage Stability of Electric Power Systems. (Springer US, 1998). doi:10.1007/978-0-387-75536-6 – 10.1007/978-0-387-75536-6
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Dynamics on Graphs: Consensus and Coordination Control Algorithms. IFAC Proceedings Volumes 43, 175–178 (2010) – 10.3182/20100913-2-fr-4014.00012
- Wellstead P. E., Introduction to physical system modelling (1979)
- Yang, Y., Zhou, K. & Blaabjerg, F. Frequency adaptability of harmonics controllers for grid-interfaced converters. International Journal of Control 90, 3–14 (2015) – 10.1080/00207179.2015.1022957